BASELINE MONITORING DOCUMENT AND AS-BUILT BASELINE REPORT

96312

AYCOCK SPRINGS STREAM AND WETLAND MITIGATION SITE

Alamance County, North Carolina Full Delivery Contract No. 5791

Data Collection: April 2016 Submission: May 2016

Cape Fear River Basin Cataloging Unit 03030002

PREPARED FOR:

N.C. DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES 1601 MAIL SERVICE CENTER RALEIGH, NORTH CAROLINA 27699-1601

BASELINE MONITORING DOCUMENT AND AS-BUILT BASELINE REPORT

AYCOCK SPRINGS STREAM AND WETLAND MITIGATION SITE

Alamance County, North Carolina Full Delivery Contract No. 5791

Cape Fear River Basin Cataloging Unit 03030002

PREPARED BY:

RESTORATION SYSTEMS, LLC 1101 HAYNES STREET, SUITE 211 RALEIGH, NORTH CAROLINA 27604

AND

AXIOM ENVIRONMENTAL, INC. 218 SNOW AVENUE RALEIGH, NORTH CAROLINA 27603

July 2016

EXECUTIVE SUMMARY

Restoration Systems, LLC has established the Aycock Springs Stream and Wetland Mitigation Site (Site) located approximately 1.5 miles north of Elon and Gibsonville in western Alamance County. The Site is encompassed within 14-digit Cataloging Unit and Targeted Local Watershed 03030002030010 of the Cape Fear River Basin.

Prior to construction, the Site encompassed approximately 13 acres of agricultural land used for livestock grazing and timber production. The Site is situated along Travis Creek and four unnamed tributaries (UTs) to Travis Creek. Existing streams were cleared, dredged, trampled by livestock, eroded vertically and laterally, and received extensive sediment and nutrient inputs from livestock and adjacent runoff. A breached dam was located at the downstream extent of Travis Creek which didn't effectively pass storm flows and impounded water during rain events. In addition, streamside wetlands were cleared and drained by channel downcutting and land uses. The Site was identified to assist the North Carolina Division of Mitigation Services (NCDMS) in meeting its stream and wetland restoration goals.

The following table summarizes the project goals/objectives and proposed functional uplift based on proposed Site restoration activities and observations of two reference areas located in the vicinity of the Site.

Project Goals and Objectives

Project Goal/Objective	How Goal/Objective will be Accomplished	
	Improve Hydrology	
Restore Floodplain Access	Building a new channel at the historic floodplain elevation to restore overbank flows	
Restore Wooded Riparian Buffer	Planting a woody riparian buffer	
Restore Stream Stability		
Improve Sediment Transport to Convert the UTs from Sand/Silt Dominated to Gravel/Cobble Dominated Streams	Providing proper channel width and depth, stabilizing channel banks, providing gravel/cobble substrate, planting a woody riparian buffer, and removing cattle	
Improve Stream Geomorphology		
Increase Surface Storage and Retention	Building a new channel at the historic floodplain elevation restoring	
Restore Appropriate Inundation/Duration	overbank flows, removing cattle, scarifying compacted soils, and planting woody vegetation	
Increase Subsurface Storage and Retention	Raising the stream bed elevation and rip compacted soils	
Improve Water Quality		
Increase Upland Pollutant Filtration	Planting a native, woody riparian buffer	
Increase Thermoregulation	Planting a native, woody riparian buffer	
Reduce Stressors and Sources of Pollution	Removing cattle and other agricultural inputs	
Increase Removal and Retention of Pathogens, Particulates (Sediments), Dissolved Materials (Nutrients), and Toxins from the Water Column	Raising the stream bed elevation, restoring overbank flows, planting with woody vegetation, removing cattle, increasing surface storage and retention, and restoring appropriate inundation/duration	
Increase Energy Dissipation of Overbank/Overland Flows/Stormwater Runoff	Raising the stream bed elevation, restoring overbank flows, and planting with woody vegetation	
	Restore Habitat	
Restore In-stream Habitat	Building a stable channel with a cobble/gravel bed and planting a woody riparian buffer	
Restore Stream-side Habitat Improve Vegetation Composition and Structure	Planting a woody riparian buffer	

Positive aspects supporting mitigation activities at the Site include the following.

- Streams have a Best Usage Classification of WS-V, NSW
- Located in a Targeted Local Watershed and within the NCDMS Travis, Tickle, Little Alamance Local Watershed Planning (LWP) Area
- Travis Creek is listed on the NCDENR 2012 303(d) list for ecological/biological integrity
- Immediately south and abutting the Site is a property identified in the *Little Alamance, Travis, & Tickle Creek Watersheds Restoration Plan* (PTCOG 2008) as a target property for wetland restoration and streambank enhancement/conservation
- Immediately west of the Site is a large tract associated with Guilford County open space

Project construction and planting was completed between February 3, 2016 and April 8, 2016. Site activities included the restoration of perennial and intermittent stream channels, enhancement (Level II) of perennial stream channel, and re-establishment of riparian wetlands. Priority I restoration of intermittent channels at the Site is imperative to provide significant functional uplift to Site hydrology, water quality, and habitat, in addition to restore adjacent streamside, riparian wetlands. A total of 3581 Stream Mitigation Units (SMUs) and 0.5 Riparian Wetland Mitigation Units (WMUs) are being provided as depicted in the following table.

Stream Mitigation Type	Perennial Stream (linear feet)	Intermittent Stream (linear feet)	Ratio	Stream Mitigation Units
Restoration	3147	90	1:1	3237
Restoration (See Notes below)**		122	1:5:1	81
Enhancement (Level II)	657		2.5:1	263
TOTAL	3804	212		3581
Wetland Mitigation Type	Acreage	Ratio	-	n Wetland tion Units
Riparian Re-establishment	0.5	1:1	(0.5
Riparian Enhancement	1.5*			
TOTAL	2.0			0.5

^{*} Wetland enhancement acreage is not included in mitigation credit calculations as per RFP 16-005568 requirements.

In addition, the landowner received a violation for riparian buffer impacts due to clearing of trees adjacent to streams draining to Jordan Lake (NOV-2013-BV-0001). As a result of this violation, the upper 122 linear feet of UT 3 has a reduced credit ratio (1.5:1). On-site visits conducted with USACE representatives determined that the functional uplift of project restoration to UT 3 would be satisfactory to generate credit at this ratio.

^{**} Prior to Site selection, the landowner received a violation for unauthorized discharge of fill material into Waters of the United States. Fill resulted from unpermitted upgrades to a farm pond dam, including widening the dam footprint, dredging stream channel, and casting spoil material adjacent to the stream channel on jurisdictional wetlands. Prior to restoration activities the landowner was required to obtain an after-the-fact permit to resolve the violations of Section 301 of the Clean Water Act (Action ID:SAW-2014-00665). In addition, stream reaches and wetland areas associated with the violation have been removed from credit generation.

TABLE OF CONTENTS

EXEC	UTIVE SUMMARY	i			
1.0	PROJECT GOALS, BACKGROUND, AND ATTRIBUTES	1			
1.1	1.1 Location and Setting				
1.2	Project Goals and Objectives				
1.3	Project Structure, Restoration Type, and Approach				
	3.1 Project Structure				
	3.2 Restoration Type and Approach				
2.0	SUCCESS CRITERIA				
2.1	Streams				
2.2	Vegetation				
2.3	Wetland Hydrology				
3.0	MONITORING PLAN Streams				
3.1	Vegetation				
3.2	Wetland Hydrology				
4.0	MAINTENANCE AND CONTINGENCY	6			
5.0	REFERENCES				
	APPENDICES				
Appen	dix A. General Tables and Figures				
pp •	Table 1. Project Components and Mitigation Units				
	Table 2. Project Activity and Reporting History				
	Table 3. Project Contacts Table				
	·				
	Table 4. Project Attributes Table				
	Figure 1. Site Location				
	Figure 2. Current Conditions Plan View				
Appen	dix B. Morphological Summary Data and Plots				
	Tables 5A-5E. Baseline Morphology and Hydraulic Summary				
	Tables 6A-6L. Morphology and Hydraulic Monitoring Summary				
	Substrate Plots				
Appen	dix C. Vegetation Data				
	Table 7. Planted Bare Root Woody Vegetation				
	Table 8. Total Planted Stems by Plot and Species				
	Vegetation Plot Photographs				
Appen	dix D. As-built Plan Sheets (Preliminary)				
PP 411	As-built Survey				
	Longitudinal Profile Plots				
	Cross-section Plots				
Annon	dix E. FEMA Coordination – LOMR				
Appen	uix E. TEIVIA COORUMATION – LOVIK				

1.0 PROJECT GOALS, BACKGROUND, AND ATTRIBUTES

1.1 Location and Setting

Restoration Systems, LLC has established the Aycock Springs Stream and Wetland Mitigation Site (Site) located approximately 1.5 miles north of Elon and Gibsonville in western Alamance County (Figure 1, Appendix A). Prior to construction, the Site encompassed approximately 13 acres of agricultural land used for livestock grazing, hay production, and timber harvest. Streams were cleared, trampled by livestock, eroded vertically and laterally, and received extensive sediment and nutrient inputs from livestock and timber harvest activities. Stream impacts in Travis Creek also occurred due to a breached dam that impounded water during storm events. In addition, streamside wetlands were drained by channel incision, soil compaction, the loss of forest vegetation, and land uses.

Directions to the Site from Interstate 40/85 in Burlington/Elon, North Carolina.

- Exit onto University Drive (I-40/85 Exit 140) and travel north towards Elon,
- > Travel north for 2.8 miles and merge with NC 100,
- Continue on University Drive (NC 100) for 0.5 mile and turn left onto Manning Street (SR 1503),
- > Travel northwest for 0.8 mile and turn right onto Gibsonville-Ossipee Road (SR 1500),
- > Travel north for 0.7 mile and Site is on the right.
 - o Site Latitude, Longitude 36.127271°N, 79.525214°W (NAD83/WGS84)

1.2 Project Goals and Objectives

Based on the Cape Fear River Basin Restoration Priorities Report 2009 (NCEEP 2009) and the Little Alamance, Travis, & Tickle Creek Watersheds Restoration Plan (PTCOG 2008), Targeted Local Watershed 03030002030010 is not meeting its designated use of supporting aquatic life. Agricultural land use appears to be the main source of stress in the Hydrologic Unit, as well as land clearing and poor riparian management. This project will meet the eight priority goals of the Travis, Tickle, Little Alamance Local Watershed Plan (LWP) including the following.

- 1) Reduce sediment loading
- 2) Reduce nutrient loading
- 3) Manage stormwater runoff
- 4) Reduce toxic inputs
- 5) Provide and improve instream habitat
- 6) Provide and improve terrestrial habitat
- 7) Improve stream stability
- 8) Improve hydrologic function

The following six goals were identified by the Stakeholder group of the Travis, Tickle, Little Alamance LWP Phase I assessment which address the water quality impacts and watershed needs in all of the Little Alamance, Travis, Tickle watersheds in 2006.

- 1) Increase local government awareness of the impacts of urban growth on water resources
- 2) Strengthen watershed protection standards
- 3) Improve water quality through stormwater management
- 4) Identify and rank parcels for retrofits, stream repair, preservation, and/or conservation
- 5) Assess aquatic health to identify stressors that are the most likely causes of poor biological conditions
- 6) Meet requirements of outside funding sources for implementation of projects

The following table summarizes the project goals/objectives and proposed functional uplift based on restoration activities and observations of two reference areas located in the vicinity of the Site. Goals and objectives target functional uplift identified in the Travis, Tickle, Little Alamance LWP and based on stream/wetland functional assessments developed by the regulatory agencies.

Project Goals and Objectives

Project Goals and Objectives			
Project Goal/Objective	How Goal/Objective will be Accomplished		
	Improve Hydrology		
Restore Floodplain Access	Building a new channel at the historic floodplain elevation to restore overbank flows		
Restore Wooded Riparian Buffer	Planting a woody riparian buffer		
Restore Stream Stability			
Improve Sediment Transport to Convert the UTs from Sand/Silt Dominated to Gravel/Cobble Dominated Streams	Providing proper channel width and depth, stabilizing channel banks, providing gravel/cobble substrate, planting a woody riparian buffer, and removing cattle		
Improve Stream Geomorphology	D.11. 1 1 (4 1. () 0 11. 1 () ()		
Increase Surface Storage and Retention	Building a new channel at the historic floodplain elevation restoring		
Restore Appropriate Inundation/Duration	overbank flows, removing cattle, scarifying compacted soils, and planting woody vegetation		
Increase Subsurface Storage and Retention	Raising the stream bed elevation and rip compacted soils		
Improve Water Quality			
Increase Upland Pollutant Filtration	Planting a native, woody riparian buffer		
Increase Thermoregulation	Planting a native, woody riparian buffer		
Reduce Stressors and Sources of Pollution	Removing cattle and other agricultural inputs		
Increase Removal and Retention of Pathogens, Particulates (Sediments), Dissolved Materials (Nutrients), and Toxins from the Water Column	Raising the stream bed elevation, restoring overbank flows, planting with woody vegetation, removing cattle, increasing surface storage and retention, and restoring appropriate inundation/duration		
Increase Energy Dissipation of	Raising the stream bed elevation, restoring overbank flows, and planting		
Overbank/Overland Flows/Stormwater Runoff	with woody vegetation		
	Restore Habitat		
Restore In-stream Habitat	Building a stable channel with a cobble/gravel bed and planting a woody riparian buffer		
Restore Stream-side Habitat Improve Vegetation Composition and Structure	Planting a woody riparian buffer		

1.3 Project Structure, Restoration Type, and Approach

1.3.1 Project Structure

Prior to construction, Site UTs were cleared, dredged of cobble substrate, trampled by livestock, eroded vertically and laterally, and received extensive sediment and nutrient inputs from livestock. Approximately 95 percent of the UT stream channels were degraded contributing to sediment and nutrient export from the Site. In addition, streamside wetlands were cleared and drained by channel downcutting and land uses.

Two outer bends of Travis Creek targeted for restoration were characterized by excessive shear and tight meander radii. In addition, the downstream reach characterized by a partially breached dam, which impeded stormwater pulses, resulting in hydrologic stacking of water upstream from the breached area. Approximately 30 percent of the Travis Creek stream channel was degraded by vegetative clearing, erosion of channel banks, and impediment of stormwater flows.

Prior Site conditions resulted in degraded water quality, a loss of aquatic habitat, reduced nutrient and sediment retention, and unstable channel characteristics (loss of horizontal flow vectors that maintain pools

and an increase in erosive forces to channel bed and banks). Site restoration activities restored riffle-pool morphology, aided in energy dissipation, increased aquatic habitat, stabilized channel banks, and greatly reduced sediment loss from channel banks.

1.3.2 Restoration Type and Approach

Restoration and protection of aquatic resources with a conservation easement will result in net gains in hydrology, water quality, and habitat functions at the Site. Site construction was completed on April 6, 2016 and Site planting was completed on April 8, 2016. A summary of mitigation activities includes the following.

- Providing a minimum of 3581 SMUs, as calculated in accordance with the requirements stipulated in RFP #16-005568.
 - o Restoring approximately 3359 linear feet of stream channel through construction of stable stream channels in the historic floodplain location and elevation.
 - o Enhancing (Level II) approximately 657 linear feet of stream channel by ceasing current land use practices, removing invasive species, spot treating stressed banks with willow stakes and brush mattresses, and planting with native forest vegetation.
- Providing a minimum of 0.5 riparian WMUs, as calculated in accordance with the requirements stipulated in RFP #16-005568.
 - o Restoring 0.5 acre of riparian wetland by removing livestock, restoring compacted soils, raising stream channels to historic elevations, and rehydrating floodplain soils.
 - o Enhancing an additional 1.5 acres of riparian wetland.
- Removing cattle from the Site and fencing the entire conservation easement.
- Revegetating wetlands, floodplains, and slopes adjacent to restored streams.
- Protecting the Site in perpetuity with a conservation easement.

Completed project activities, reporting history, completion dates, project contacts, and project attributes are summarized in Tables 1-4 (Appendix A).

2.0 SUCCESS CRITERIA

2.1 Streams

Monitoring and success criteria for stream restoration should relate to project goals and objectives. From a mitigation perspective, several of the goals and objectives are assumed to be functionally elevated by restoration activities without direct measurement. Other goals and objectives will be considered successful upon achieving vegetation success criteria. The following summarizes stream success criteria related to goals and objectives.

Project Goal/Objective Stream Success Criteria		
Impr	rove Hydrology	
Restore Floodplain Access	Two overbank events in separate monitoring years will be documented during the monitoring period.	
Restore Wooded Riparian Buffer	Attaining Vegetation Success Criteria (Section 2.2).	
Restore Stream Stability	Cross-sections, monitored annually, will be compared to asbuilt measurements to determine channel stability and maintenance of channel geomorphology.	
Improve Stream Geomorphology	Convert stream channels from unstable G- and F-type channels to stable E- and C- type stream channels.	
Increase Surface Storage and Retention	Two overbank events in separate monitoring years, and	
Restore Appropriate Inundation/Duration	attaining Wetland and Vegetation Success Criteria (Sections 2.3 and 2.2).	

Increase Subsurface Storage and Retention	Two overbank events will be documented, in separate years, during the monitoring period and documentation of an elevated groundwater table (within 12 inches of the soil surface) for greater than 10 percent of the growing season during average climatic conditions.		
Improve Sediment Transport to Convert the UTs	Pebble counts documenting coarsening of bed material from		
from Sand/Silt Dominated to Gravel/Cobble	pre-existing conditions of sand and silt to post restoration		
Dominated Streams	conditions of gravel and cobble.		
Improv	e Water Quality		
In arrange I Inland Dellutent Filtration	Attaining Wetland and Vegetation Success Criteria (Sections		
Increase Upland Pollutant Filtration	2.3 and 2.2)		
Increase Thermoregulation	Attaining Vegetation Success Criteria (Section 2.2).		
Reduce Stressors and Sources of Pollution	Fencing maintained throughout the monitoring period and encroachment within the easement eliminated.		
Increase Removal and Retention of Pathogens,	Removal of cattle, documentation of two overbank events in		
Particulates (Sediments), Dissolved Materials	separate monitoring years, and attaining Vegetation Success		
(Nutrients), and Toxins from the Water Column	Criteria (Section 2.2)		
Increase Energy Dissipation of Overbank/Overland	Documentation of two overbank events in separate monitoring		
Flows/Stormwater Runoff	years and attaining Vegetation Success Criteria (Section 2.2)		
Restore Habitat			
	Pebble counts documenting coarsening of bed material from		
Restore In-stream Habitat	pre-existing conditions of sand and silt to post restoration		
Restore in-stream fractiat	conditions of gravel and cobble, and attaining Vegetation		
	Success Criteria (Section 2.2)		
Restore Stream-side Habitat	Attaining Vegetation Success Criteria (Section 2.2)		
Improve Vegetation Composition and Structure	Attaining Vegetation Success Criteria (Section 2.2)		

2.2 Vegetation

An average density of 320 planted stems per acre must be surviving in the first three monitoring years. Subsequently, 290 planted stems per acre must be surviving in year 4, 260 planted stems per acre in year 5, and 210 planted stems per acre in year 7. In addition, planted vegetation must average 10 feet in height in each plot at year 7 since this Site is located in the Piedmont. Volunteer stems may be considered on a case-by-case basis in determining overall vegetation success; however, volunteer stems should be counted separately from planted stems.

2.3 Wetland Hydrology

Monitoring and success criteria for wetland re-establishment should relate to project goals and objectives. From a mitigation perspective, several of the goals and objectives are assumed to be functionally elevated by restoration activities without direct measurement. Other goals and objectives will be considered successful upon achieving vegetation success criteria. The following summarizes wetland success criteria related to goals and objectives.

According to the *Soil Survey of Alamance County*, the growing season for Alamance County is from April 17 – October 22 (USDA 1960). However, the start date for the growing season is not typical for the Piedmont region; therefore, for purposes of this project gauge hydrologic success will be determined using data from February 1 - October 22 to more accurately represent the period of biological activity. This will be confirmed annually by soil temperatures and/or bud burst. The growing season will be initiated each year on the documented date of biological activity. Photographic evidence of bud burst and field logs of date and temperature will be included in the annual monitoring reports.

Target hydrological characteristics include saturation or inundation for 10 percent of the monitored period (February 1-October 22), during average climatic conditions. During years with atypical climatic

conditions, groundwater gauges in reference wetlands may dictate threshold hydrology success criteria (75 percent of reference). These areas are expected to support hydrophytic vegetation. If wetland parameters are marginal as indicated by vegetation and/or hydrology monitoring, a jurisdictional determination will be performed.

Wetland Goals and Success Criteria

Project Goal/Objective	Wetland Success Criteria	
Improve Hydrology		
Restore Wooded Riparian Buffer	Attaining Vegetation Success Criteria (Section 2.2).	
Increase Surface Storage and Retention	Two overbank events in separate monitoring years, and	
Restore Appropriate Inundation/Duration	attaining Wetland and Vegetation Success Criteria (Sections 2.3	
Increase Subsurface Storage and Retention	and 2.2).	
Improv	re Water Quality	
Ingrassa Unland Pollutant Filtration	Attaining Wetland and Vegetation Success Criteria (Sections	
Increase Upland Pollutant Filtration	2.3 and 2.2).	
Reduce Stressors and Sources of Pollution	Fencing maintained throughout the monitoring period and	
Reduce Stressors and Sources of Fondtion	encroachment within the easement eliminated.	
Increase Removal and Retention of Pathogens,	Removal of cattle, documentation of two overbank events in	
Particulates (Sediments), Dissolved Materials	separate monitoring years, and attaining Vegetation Success	
(Nutrients), and Toxins from the Water Column	Criteria (Section 2.2).	
Increase Energy Dissipation of Overbank/Overland	Documentation of two overbank events in separate monitoring	
Flows/Stormwater Runoff	years, and attaining Vegetation Success Criteria (Section 2.2).	
Res	store Habitat	
Restore Stream-side Habitat	Attaining Vegetation Success Criteria (Section 2.2).	
Improve Vegetation Composition and Structure	Attaining vegetation success effectia (Section 2.2).	

3.0 MONITORING PLAN

Monitoring requirements and success criteria outlined in the latest guidance by US Army Corps of Engineers (USACE) in April 2003 (*Stream Mitigation Guidelines*) will be followed and are briefly outlined below. Monitoring data collected at the Site should include reference photos, plant survival analysis, channel stability analysis, and biological data, if specifically required by permit conditions.

Wetland hydrology is proposed to be monitored for a period of seven years (years 1-7). Riparian vegetation and stream morphology is proposed to be monitored for a period of seven years with measurements completed in years 1-3, year 5, and year 7. Monitoring reports for years 4 and 6 will include photo documentation of stream stability and wetland hydrology monitoring data. If monitoring demonstrates the Site is successful by year 5 and no concerns have been identified, Restoration Systems may propose to terminate monitoring at the Site and forego monitoring requirements for years 6 and 7. Early closure will only be provided through written approval from the USACE in consultation with the Interagency Review Team (NC IRT). Monitoring will be conducted by Axiom Environmental, Inc. Annual monitoring reports of the data collected will be submitted to the NCDMS by Restoration Systems no later than December 31 of each monitoring year data is collected.

3.1 Streams

Annual monitoring will include development of channel cross-sections and substrate on riffles and pools. Data to be presented in graphic and tabular format will include 1) cross-sectional area, 2) bankfull width, 3) average depth, 4) maximum depth, 5) width-to-depth ratio, 6) bank height ratio, and 7) entrenchment ratio. Longitudinal profiles will not be measured routinely unless monitoring demonstrates channel bank or bed instability, in which case, longitudinal profiles may be required by the USACE along reaches of concern to track changes and demonstrate stability.

Visual assessment of in-stream structures will be conducted to determine if failure has occurred. Failure of a structure may be indicated by collapse of the structure, undermining of the structure, abandonment of the channel around the structure, and/or stream flow beneath the structure. In addition, visual assessments of the entire channel will be conducted in years 1-3, 5, and 7 of monitoring as outlined in NCDMS *Monitoring Requirements and Reporting Standards for Stream and/or Wetland Mitigation*. Areas of concern will be depicted on a plan view figure identifying the location of concern along with a written assessment and photograph of the area.

3.2 Vegetation

After planting was completed on April 8, 2016, an initial evaluation was performed to verify planting methods and to determine initial species composition and density. Supplemental planting and additional Site modifications will be implemented, if necessary.

During quantitative vegetation sampling, 14 sample plots (10-meter by 10-meter) were installed within the Site as per guidelines established in *CVS-EEP Protocol for Recording Vegetation*, *Version 4.2* (Lee et al. 2008). In each sample plot, vegetation parameters to be monitored include species composition and species density. Visual observations of the percent cover of shrub and herbaceous species will also be documented by photograph. Baseline vegetation plot information can be found in Appendix C. Initial stem count measurements indicate an average of 593 planted stems per acre across the Site. In addition, each vegetation plot exceeded the minimum criteria for success.

3.3 Wetland Hydrology

Three groundwater monitoring gauges were installed to take measurements after hydrological modifications were performed at the Site. Hydrological sampling will continue throughout the growing season at intervals necessary to satisfy jurisdictional hydrology success criteria (USEPA 1990). In addition, a surface water gauge has been installed in Tributary 3 to monitor flow regime of the tributary. Approximate locations of gauges are depicted on Figure 2 (Appendix A) and Asbuilt Plan Sheets (Appendix D).

4.0 MAINTENANCE AND CONTINGENCY

In the event that success criteria are not fulfilled, a mechanism for contingency will be implemented.

Stream

In the event that stream success criteria are not fulfilled, a mechanism for contingency will be implemented. Stream contingency may include, but may not be limited to 1) structure repair and/or installation; 2) repair of dimension, pattern, and/or profile variables; and 3) bank stabilization. The method of contingency is expected to be dependent upon stream variables that are not in compliance with success criteria. Primary concerns, which may jeopardize stream success, include 1) structure failure, 2) headcut migration through the Site, and/or 3) bank erosion.

Structure Failure

In the event that structures are compromised the affected structure will be repaired, maintained, or replaced. Once the structure is repaired or replaced, it must function to stabilize adjacent stream banks and/or maintain grade control within the channel. Structures which remain intact, but exhibit flow around, beneath, or through the header/footer will be repaired by excavating a trench on the upstream side of the structure and reinstalling filter fabric in front of the pilings. Structures which have been compromised, resulting in shifting or collapse of header/footer, will be removed and replaced with a structure suitable for Site flows.

Headcut Migration Through the Site

In the event that a headcut occurs within the Site (identified visually or through measurements [i.e. bank-height ratios exceeding 1.4]), provisions for impeding headcut migration and repairing damage caused by the headcut will be implemented. Headcut migration may be impeded through the installation of in-stream grade control structures (rip-rap sill and/or log cross-vane weir) and/or restoring stream geometry variables until channel stability is achieved. Channel repairs to stream geometry may include channel backfill with coarse material and stabilizing the material with erosion control matting, vegetative transplants, and/or willow stakes.

Bank Erosion

In the event that severe bank erosion occurs within the Site, resulting in elevated width-to-depth ratios, contingency measures to reduce bank erosion and width-to-depth ratio will be implemented. Bank erosion contingency measures may include the installation of log-vane weirs and/or other bank stabilization measures. If the resultant bank erosion induces shoot cutoffs or channel abandonment, a channel may be excavated which will reduce shear stress to stable values.

Vegetation

If vegetation success criteria are not achieved based on average density calculations from combined plots over the entire restoration area, supplemental planting may be performed with tree species approved by regulatory agencies. Supplemental planting will be performed as needed until achievement of vegetation success criteria.

Hydrology

Hydrological contingency will require consultation with hydrologists and regulatory agencies if wetland hydrology enhancement is not achieved. Floodplain surface modifications, including construction of ephemeral pools, represent a likely mechanism to increase the floodplain area in support of jurisdictional wetlands. Recommendations for contingency to establish wetland hydrology will be implemented and monitored until Hydrology Success Criteria are achieved.

5.0 REFERENCES

- Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1. United States Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.
- Environmental Laboratory. 2012. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region (Version 2.0). United States Army Engineer Research and Development Station, Vicksburg, Mississippi.
- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation. Version 4.2. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, North Carolina.
- North Carolina Ecosystem Enhancement Program (NCEEP 2009). Cape Fear River Basin Restoration Priorities 2009 (online). Available: http://portal.ncdenr.org/c/document_library/get_file?uuid=864e82e8-725c-415e-8ed9-c72dfcb55012&groupId=60329
- The Piedmont Triad Council of Governments (PTCOG 2008). Little Alamance, Travis, & Tickle Creek Watersheds Restoration Plan. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, North Carolina.
- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina: Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, North Carolina Department of Environment, Health, and Natural Resources. Raleigh, North Carolina.
- United States Department of Agriculture (USDA). 1960. Soil Survey of Alamance County, North Carolina. Soil Conservation Service.
- United States Environmental Protection Agency (USEPA). 1990. Mitigation Site Type Classification (MiST). EPA Workshop, August 13-15, 1989. EPA Region IV and Hardwood Research Cooperative, NCSU, Raleigh, North Carolina.

Appendix A. General Tables and Figures

Table 1. Project Components and Mitigation Credits
Table 2. Project Activity and Reporting History
Table 3. Project Contacts Table
Table 4. Project Attributes Table
Figure 1. Site Location
Figure 2. Current Conditions Plan View

Table 1. Project Components and Mitigation Credits

Avenck Springs Mitigation Site

936

PΙ

Restoration

Aycock Springs Miti	gation Site						
Mitigation Credits							
Stream	Stream		Rip	oarian Wetland			Nonriparian Wetland
Restoration	Enhancemen	t	Re	-establishment		Re-establishment	
3318	263			0.5			
			Projects	Components			
Station Range	Existing Linear Footage/ Acreage	Priority Approach	Restoration/ Restoration Equivalent	Restoration Linear Footage/ Acreage	Mitigation Ratio	Mitigation Credits	Comment
UT 1 Station 10+04 to 23+21	1173	PI	Restoration	1317-24= 1293	1:1	1293	24 If of UT 1 is located outside of easement and is not credit generating
UT 2 Station 10+00 to 16+75	723	PI	Restoration	675	1:1	675	
UT 3 Station 10+00 to 11+22	147	PI	Restoration	122	1.5:1	81	*** The upper 122 linear feet of channel is in a violation area and is generating credit at a reduced ratio of 1.5:1
UT 3 Station 11+22 to 12+12	16	PI	Restoration	90	1:1	90	
UT 4 Station 10+00 to 14+13	448	PI	Restoration	413-107= 306	1:1	306	****The upper 107 linear feet of channel is in a violation area and is not credit generating
Travis Creek Station 10+00 to 15+78	578		EII	578-20= 558	2.5:1	223	The upper 20 linear feet of Travis Creek is within a powerline easement and is not credit generating
Travis Creek Station 15+78 to 17+87	274	PII	Restoration	209	1:1	209	
Travis Creek	99		EII	99	2.5:1	40	

664

1:1

664

Station 17+87 to 18+86 Travis Creek

Station 23+71 to 30+35

Table 1. Project Components and Mitigation Credits (continued) Aycock Springs Mitigation Site

Component Summation				
Restoration Level	Stream (linear footage)	Riparian Wetland (acreage)	Nonriparian Wetland (acreage)	
Restoration	3359	0.5		
Enhancement (Level 1)				
Enhancement (Level II)	657			
Enhancement		1.5**		
Totals	4016			
Mitigation Units	3581 SMUs	0.5 Riparian WMUs	0.00 Nonriparian WMUs	

^{**}Wetland enhancement acreage is not included in mitigation credit calculations as per RFP 16-005568 requirements.

^{***}Prior to Site selection, the landowner received a violation for riparian buffer impacts due to clearing of trees adjacent to streams draining to Jordan Lake (NOV-2013-BV-0001). As a result of this violation, the upper 122 linear feet of UT 3 has a reduced credit ratio of 1.5:1. On-site visits conducted with USACE representatives determined that the functional uplift of project restoration to UT 3 would be satisfactory to generate credit at this ratio.

^{****} Prior to Site selection, the landowner received a violation for unauthorized discharge of fill material into Waters of the United States. Fill resulted from unpermitted upgrades to a farm pond dam, including widening the dam footprint, dredging stream channel, and casting spoil material adjacent to the stream channel on jurisdictional wetlands. Prior to restoration activities the landowner was required to obtain an after-the-fact permit to resolve the violations of Section 301 of the Clean Water Act (Action ID:SAW-2014-00665). In addition, stream reaches and wetland areas associated with the violation area have been removed from credit generation – UT 4 begins credit generation at Station 11+07).

Table 2. Project Activity and Reporting History Aycock Springs Mitigation Site

	Data Collection	Completion
Activity or Deliverable	Complete	or Delivery
Technical Proposal (RFP No. 16-005568)		October 2013
DMS Contract No. 5791		February 2014
Mitigation Plan	October 2014	May 2015
Construction Plans		June 2015
Construction Earthwork		April 6, 2016
Planting		April 8, 2016
As-Built Documentation	April 2016	May 2016

Table 3. Project Contacts Table

Avcock Springs Mitigation Site

Full Delivery Provider	Restoration Systems		
	1101 Haynes Street, Suite 211		
	Raleigh, North Carolina 27604		
	Worth Creech		
	919-755-9490		
Designer and Monitoring Provider	Axiom Environmental, Inc.		
	218 Snow Avenue		
	Raleigh, NC 27603		
	Grant Lewis		
	919-215-1693		

Table 4. Project Attribute Table

Avcock Springs Mitigation Site

Project Information		
Project Name	Aycock Springs Restoration Site	
Project County	Alamance County, North Carolina	
Project Area (acres)	15	
Project Coordinates (latitude & latitude)	36.127271°N, 79.525214°W	
Project Watershed Summary Information		
Physiographic Province	Piedmont	
Project River Basin	Cape Fear	
USGS HUC for Project (14-digit)	03030002030010	
NCDEQ Sub-basin for Project	03-06-02	
Project Drainage Area (acres)	26-3008	
Project Drainage Area Percentage of Impervious Area	<2%	

Table 4. Project Attribute Table (continued) Aycock Springs Mitigation Site

Aycock Springs Mitigation Site Reach Summary	/ Information			
Parameters Parameters	Travis Cr	UT 1/UT2	UT 3	UT 4
Length of reach (linear feet)	1550	1966	212	413
Valley Classification	1330	alluvi		413
Drainage Area (acres)	3008	68	26	119
NCDWQ Stream ID Score		30.75/25.5	26.75	27.5
NCDWR Water Quality Classification		WS-V, 1		21.3
Existing Morphological Description (Rosgen 1996)	Co	5/6-, Eg 5-, a		.
Existing Evolutionary Stage (Simon and Hupp 1986)	IV	IV IV	III	III
		ena, Mixed Al		
Underlying Mapped Soils		Gullied Land,	Worsham	J
Drainage Class		ed, moderately ned, variable,		
Hydric Soil Status		Nonhydric ar		
Slope	0.0023	0.0249	0.0153	0.0093
FEMA Classification	AE	Special	Hazard Floo	d Area
Native Vegetation Community	Piedmont All	uvial Forest/L Fores	•	ak-Hickory
Watershed Land Use/Land Cover (Site)		t, 53% agricu residential/in		
Watershed Land Use/Land Cover (Cedarock		t, 30% agricu		
Reference Channel)		residential/in		
Percent Composition of Exotic Invasive Vegetation		< 5%	•	
Wetland Summar	ry Information	1		
Parameters		Wetla	ıds	
Wetland acreage		1.6		
Wetland Type		Ripari	an	
Mapped Soil Series	Worsl	nam and Mixe		and
Drainage Class		Poorly dr	ained	
Hydric Soil Status		Hydr		
Source of Hydrology	Gro	oundwater, str	eam overban	k
Hydrologic Impairment	Incised st	reams, compa	cted soils, li	vestock
Native Vegetation Community		nt/Low Mount		
Percent Composition of Exotic Invasive Vegetation		<5%)	
Regulatory Co	nsiderations			
Regulation	Applicable?	Resolved?		orting entation
Waters of the United States-Section 401	Yes	Resolved		Permit
Waters of the United States-Section 404	Yes	Resolved		tification
Endangered Species Act	No			Doc.
Historic Preservation Act	No			Doc.
Coastal Zone Management Act	No			A
FEMA Floodplain Compliance	Yes	In progress		R/LOMR
Essential Fisheries Habitat	No			A A
Essential I islicites Hastat	110	1	1 1,	11.1

Appendix B Morphological Summary Data and Plots

Tables 5A-5E. Baseline Stream Data Summary
Tables 6A-6L. Monitoring Data-Dimensional Data Summary
Substrate Plots

Table 5A. Baseline Morphology and Hydraulic Summary Aycock Springs UT 1

Parameter																	
a anetti	USGS Gage	Data		e-Exist Conditi		-	ect Refe larock P			ect Refe			Design			As-bu	ilt
Dimension	Min Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USGS gage		3.8	9.6	6.7	8	12.1	8.1	3	6.1	4.6	7.2	8.3	7.8	6.4	9.6	8.0
Floodprone Width (ft)	unavailable f	or this	8	73	30	15	25	18	150	150	150	20	70	50			90
BF Cross Sectional Area (ft2)	project				4.3			8			5.9			4.3	3	6.6	3.9
BF Mean Depth (ft)			0.8	1	0.8	0.8	1	0.8	0.7	1.5	1.1	0.5	0.7	0.6	0.4	0.7	0.5
BF Max Depth (ft)			1.1	1.4	1.4	1.1	1.4	1.4	1	2.3	1.7	0.7	0.9	0.8	0.6	1.1	0.7
Width/Depth Ratio			8	15.1	10.1	8	15.1	10.1	4	4.3	4.2	12	16	14	11	19	15
Entrenchment Ratio			1.9	2.2	2.1	1.9	2.2	2.1	24.6	50	37.3	2.6	9	6.4	9	14	11.3
Bank Height Ratio			1	1.8	1	1	1.8	1	1	1.5	1.3	1	1.2	1			1
Wetted Perimeter(ft)					===			===			===			===			===
Hydraulic radius (ft)					===			===			===			===			===
Pattern																	
Channel Beltwidth (ft)				attern o		20	38	22.8	15.1	29.2	24.3	23	47	31	23	47	31
Radius of Curvature (ft)				pools o		11	27	16.5	8.9	19.4	13.2	14	31	23	14	31	23
Meander Wavelength (ft)			straigh	itening	activties	44	116	68.4	31	74	47.8	47	94	66	47	94	66
Meander Width ratio						2.4	4.7	2.8	2.1	4	3.4	3	6	4	3	6	4
Profile																	
Riffle length (ft)				attern o				===			===			===	9	70	16
Riffle slope (ft/ft)				pools o			5.76%	3.16%	0.00%	1.54%		2.77%	6.47%	4.16%	0.01%	4.33%	2.23%
Pool length (ft)			straign	itening	activties			===			===			===	4	23	9
Pool spacing (ft)						25	69	37.2	14	39.6	32.4	23	62	31	23	62	31
Substrate																	
d50 (mm)					===			===			===			===			===
d84 (mm)					===			===			===			===			===
Additional Reach Parameters																	
Valley Length (ft)					===			===			===			===			===
Channel Length (ft)					===			===			===			===			===
Sinuosity					1.02			1.2			1.22			1.1			1.1
Water Surface Slope (ft/ft)					1.37% -			2.58%			0.50%			1.27% -			1.89%
			3.61%											3.35%			
BF slope (ft/ft)					===			===			===			===			===
Rosgen Classification					Cg			Е			E			E/C			E/C

Table 5B. Baseline Morphology and Hydraulic Summary Aycock Springs UT 2

Parameter	USGS Gage Data		e-Exist	_		ect Refe larock P			ect Refe						As-built	t
Dimension	Min Max Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USGS gage data is	3.8	9.6	6.7	8	12.1	8.1	3	6.1	4.6	7.2	8.3	7.8	4.8	8.6	7.2
Floodprone Width (ft)	unavailable for this	8	73	30	15	25	18	150	150	150	20	70	50			90
BF Cross Sectional Area (ft2)	project			4.3			8			5.9			4.3	1	4.2	2.3
BF Mean Depth (ft)		0.8	1	0.8	0.8	1	0.8	0.7	1.5	1.1	0.5	0.7	0.6	0.2	0.6	0.3
BF Max Depth (ft)		1.1	1.4	1.4	1.1	1.4	1.4	1	2.3	1.7	0.7	0.9	0.8	0.3	8.0	0.6
Width/Depth Ratio		8	15.1	10.1	8	15.1	10.1	4	4.3	4.2	12	16	14	12	32	22
Entrenchment Ratio		1.9	2.2	2.1	1.9	2.2	2.1	24.6	50	37.3	2.6	9	6.4	11	19	13
Bank Height Ratio		1	1.8	1	1	1.8	1	1	1.5	1.3	1	1.2	1			1
Wetted Perimeter(ft)				===			===			===			===			===
Hydraulic radius (ft)				===			===			===			===			===
Pattern																
Channel Beltwidth (ft)			attern o		20	38	22.8	15.1	29.2	24.3	23	47	31	23	47	31
Radius of Curvature (ft)			pools d		11	27	16.5	8.9	19.4	13.2	14	31	23	14	31	23
Meander Wavelength (ft)		straigh	itening a	activties	44	116	68.4	31	74	47.8	47	94	66	47	94	66
Meander Width ratio					2.4	4.7	2.8	2.1	4	3.4	3	6	4	3	6	4
Profile																
Riffle length (ft)			attern o				===			===			===	9	23	14
Riffle slope (ft/ft)			pools d		1.00%	5.76%	3.16%	0.00%	1.54%	0.83%	2.77%	6.47%	4.16%	0.00%	5.24%	2.88%
Pool length (ft)		straigh	itening a	activties			===			===			===	5	17	10
Pool spacing (ft)					25	69	37.2	14	39.6	32.4	23	62	31	23	62	31
Substrate																
d50 (mm)				===			===			===			===			===
d84 (mm)				===			===			===			===			===
Additional Reach Parameters																
Valley Length (ft)				===			===			===			===			===
Channel Length (ft)				===			===			===			===			===
Sinuosity				1.02			1.2			1.22			1.1			1.1
Water Surface Slope (ft/ft)				1.37% -			2.58%			0.50%			1.27% -			3.01%
1 ()				3.61%									3.35%			
BF slope (ft/ft)				===			===			===			===			===
Rosgen Classification				Cg			Е			Е			E/C			E/C
Note: U1 2 is characterized by a sp	ring/seen with a ver	v smal	water		he char	nel was	_	ucted w	ith a sm		nktull (ross Se		area to	account	_

Note: UT 2 is characterized by a spring/seep, with a very small watershed. The channel was constructed with a smaller Bankfull Cross Sectional area to account for the smaller stormwater pulses and controlled discharge. In addition, the lower reaches of the channel are low slope wetlands that elevate the width-to-depth ratio in post construction measurements.

Table 5C. Baseline Morphology and Hydraulic Summary Aycock Springs UT 3

Parameter	USG	S Gage	Data		re-Exist Conditi			ect Refei larock P			ect Refe ipple Cr		ed Min Max M				As-built	t
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USG	S gage d	lata is	4.1	5	4.5	8	12.1	8.1	3	6.1	4.6	7.2	8.3	7.8	4.7	7	5.9
Floodprone Width (ft)	unav	ailable fo	or this	7	18	12	15	25	18	150	150	150	20	70	50	10	20	20
BF Cross Sectional Area (ft2)		project				2.2			8			5.9			4.3	1.2	2.7	2.1
BF Mean Depth (ft)				0.4	0.5	0.5	0.8	1	0.8	0.7	1.5	1.1	0.5	0.7	0.6	0.2	0.4	0.4
BF Max Depth (ft)				8.0	1.1	1	1.1	1.4	1.4	1	2.3	1.7	0.7	0.9	0.8	0.5	0.6	0.6
Width/Depth Ratio				8.2	12.5	9.9	8	15.1	10.1	4	4.3	4.2	12	16	14	12	26	20
Entrenchment Ratio				1.7	3.6	2.5	1.9	2.2	2.1	24.6	50	37.3	2.6	9	6.4	2	4	3.3
Bank Height Ratio				1	3	2	1	1.8	1	1	1.5	1.3	1	1.2	1			1
Wetted Perimeter(ft)						===			===			===			===			===
Hydraulic radius (ft)						===			===			===			===			===
Pattern																		
Channel Beltwidth (ft)					attern o		20	38	22.8	15.1	29.2	24.3	23	47	31	23	47	31
Radius of Curvature (ft)					pools		11	27	16.5	8.9	19.4	13.2	14	31	23	14	31	23
Meander Wavelength (ft)				straigh	ntening	activties	44	116	68.4	31	74	47.8	47	94	66	47	94	66
Meander Width ratio							2.4	4.7	2.8	2.1	4	3.4	3	6	4	3	6	4
Profile																		
Riffle length (ft)					attern o				===			===			===	8	24	14
Riffle slope (ft/ft)					pools		1.00%	5.76%	3.16%	0.00%	1.54%	0.83%	2.77%	6.47%	4.16%	0.52%	2.54%	1.71%
Pool length (ft)				straigh	ntening	activties			===			===			===	6	10	8
Pool spacing (ft)							25	69	37.2	14	39.6	32.4	23	62	31	23	62	31
Substrate																		
d50 (mm)						===			===			===			===			===
d84 (mm)						===			===			===			===			===
Additional Reach Parameters					•												•	
Valley Length (ft)						===			===			===			===			===
Channel Length (ft)						===			===			===			===			===
Sinuosity						1.01			1.2			1.22			1.1			1.1
Water Surface Slope (ft/ft)						1.53%			2.58%			0.50%			1.27% -			0.92%
															3.35%			
BF slope (ft/ft)						===			===			===			===			===
Rosgen Classification						Eg			Е			Е			E/C			E/C

Note: UT 3 is characterized by a pond in the headwaters; therefore, the channel was constructed with a smaller Bankfull Cross Sectional area than other tributaric associated with the project.

Table 5D. Baseline Morphology and Hydraulic Summary Aycock Springs UT 4

Parameter																	
	USGS	Gage Data		re-Exist Conditi	U	-	ect Refei larock P		_	ct Refe pple Cr			Design			As-bu	ilt
Dimension	Min I	Max Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USGS g	gage data is	4.8	11.7	8.3	8	12.1	8.1	3	6.1	4.6	8.7	10	9.4	8	10.9	8.5
Floodprone Width (ft)		able for this	8	70	39	15	25	18	150	150	150	70	200	150			50
BF Cross Sectional Area (ft2)	pı	roject			6.3			8			5.9			6.3	3.5	5.6	4.3
BF Mean Depth (ft)			0.5	1.3	0.8	8.0	1	0.8	0.7	1.5	1.1	0.6	0.8	0.7	0.4	0.6	0.5
BF Max Depth (ft)			0.9	2	1.5	1.1	1.4	1.4	1	2.3	1.7	0.8	1.1	1	0.6	0.9	0.8
Width/Depth Ratio			3.7	23.4	12.4	8	15.1	10.1	4	4.3	4.2	12	16	14	16	22	19
Entrenchment Ratio			1.2	11.5	4.9	1.9	2.2	2.1	24.6	50	37.3	7.5	21.3	16	5	6	6
Bank Height Ratio	Ĭ		1.2	2.4	1.8	1	1.8	1	1	1.5	1.3	1	1.2	1			1
Wetted Perimeter(ft)	Ĭ				===			===			===			===			===
Hydraulic radius (ft)					===			===			===			===			===
Pattern	Ĭ																
Channel Beltwidth (ft)				attern o		20	38	22.8	15.1	29.2	24.3	28	56	38	28	56	38
Radius of Curvature (ft)				pools o		11	27	16.5	8.9	19.4	13.2	17	38	28	17	38	28
Meander Wavelength (ft)			straigh	ntening	activties	44	116	68.4	31	74	47.8	56	113	80	56	113	80
Meander Width ratio						2.4	4.7	2.8	2.1	4	3.4	3	6	4	3	6	4
Profile																	
Riffle length (ft)				attern o				===			===			===	12	35	16
Riffle slope (ft/ft)				pools o		1.00%	5.76%	3.16%	0.00%	1.54%	0.83%	1.12%	2.60%	1.67%	0.61%	2.42%	1.28%
Pool length (ft)			straigh	ntening	activties			===			===			===	14	42	22
Pool spacing (ft)						25	69	37.2	14	39.6	32.4	28	75	38	28	75	38
Substrate																	
d50 (mm)					===			===			===			===			===
d84 (mm)					===			===			===			===			===
Additional Reach Parameters																	
Valley Length (ft)					===			===			===			===			===
Channel Length (ft)					===	_	_	===			===		_	===			===
Sinuosity	,				1.1			1.2			1.22			1.1			1.1
Water Surface Slope (ft/ft)	,				0.93%			2.58%			0.50%			0.93%			0.66%
BF slope (ft/ft)					===			===			===			===			===
Rosgen Classification					Eg	_		Е			E		_	E/C			E/C

Table 5E. Baseline Morphology and Hydraulic Summary Aycock Springs Travis Creek

Parameter	USGS G	Sage Data		re-Exist Conditi	_		ect Refe larock P			ect Refe			Design	l		As-bu	ilt
Dimension	Min M	Iax Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USGS ga	age data is	30	51.7	41.4	8	12.1	8.1	3	6.1	4.6	25.7	29.6	27.7	25.2	30.3	26.7
Floodprone Width (ft)	unavailab	ble for this	68	160	122	15	25	18	150	150	150	200	300	250			150
BF Cross Sectional Area (ft2)	pro	oject			54.9			8			5.9			54.9	41.3	73.9	51.2
BF Mean Depth (ft)			1.1	1.8	1.4	0.8	1	0.8	0.7	1.5	1.1	1.9	2.1	2	1.6	2.4	2
BF Max Depth (ft)			3.3	4.1	3.7	1.1	1.4	1.4	1	2.3	1.7	2.7	3	2.8	2.3	3.4	2.8
Width/Depth Ratio			16.7	47	32.1	8	15.1	10.1	4	4.3	4.2	12	16	14	12	16	13
Entrenchment Ratio			1.6	5.3	3.2	1.9	2.2	2.1	24.6	50	37.3	7.2	10.8	9	5	6	5.6
Bank Height Ratio			1	1.1	1	1	1.8	1	1	1.5	1.3	1	1.2	1			1
Wetted Perimeter(ft)					===			===			===			===			===
Hydraulic radius (ft)					===			===			===			===			===
Pattern																	
Channel Beltwidth (ft)				attern o		20	38	22.8	15.1	29.2	24.3	83	166	111	83	166	111
Radius of Curvature (ft)				l pools o		11	27	16.5	8.9	19.4	13.2	55	111	83	55	111	83
Meander Wavelength (ft)			straigh	ntening	activties	44	116	68.4	31	74	47.8	166	332	236	166	332	236
Meander Width ratio						2.4	4.7	2.8	2.1	4	3.4	3	6	4	3	6	4
Profile																	
Riffle length (ft)				attern o				===			===			===	16	87	54
Riffle slope (ft/ft)				pools o		1.00%	5.76%	3.16%	0.00%	1.54%	0.83%	0.28%	0.64%	0.41%	0.00%	0.70%	0.19%
Pool length (ft)			straigh	ntening	activties			===			===			===	27	70	43
Pool spacing (ft)						25	69	37.2	14	39.6	32.4	83	222	111	83	222	111
Substrate																	
d50 (mm)					===			===			===			===			===
d84 (mm)					===			===			===			===			===
Additional Reach Parameters																	
Valley Length (ft)					===			===			===			===			===
Channel Length (ft)					===			===			===			===			===
Sinuosity					1.05			1.2			1.22			1.05			1.05
Water Surface Slope (ft/ft)					NA			2.58%			0.50%			0.23%			0.10%
BF slope (ft/ft)					===			===			===			===			===
Rosgen Classification					Fc			E			Е			E/C			E/C

Table 6A. Morphology and Hydraulic Monitoring Summary Aycock Travis Creek (Downstream) - Stream and Wetland Restoration Site

Parameter		XS 1 R	iffle (Tra	vis Do	wn)			XS 2 F	Riffle (T	ravis	Down)		XS	3 Pool	(Travi	s Down	1)		XS 4	Riffle (Travis	Down))		XS 5 1	Pool (T	ravis	Down))		XS 6 R	iffle (T	Γravis	Down)	,
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4 N	AY5 MY	0 MY	1 MY	2 MY	3 MY4	4 MY	5 MY () MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	26						25.2					33.	7					25.5						26						27.3					1
Floodprone Width (ft)	150						150						-					150												150					
BF Cross Sectional Area (ft2)	41.3						47.5					58.	7					47.2						61.4						54.9					
BF Mean Depth (ft)	1.6						1.9					1.	7					1.9						2.4						2.0					1
BF Max Depth (ft)	2.3						2.5					3.	7					2.5						4						3					1
Width/Depth Ratio	16.368						13.4						-					13.8												13.6					1
Entrenchment Ratio	5.76923						5.95						-					5.88												5.5					1
Bank Height Ratio	1						1						-					1												1					i
Wetted Perimeter (ft)	27.1						26.4					34.	8					26.6						27.6						28.7					
Hydraulic Radius (ft)	1.5						1.8					1.	,					1.8						2.2						1.9					
Substrate																																			
d50 (mm)													-																						
d84 (mm)									_				-																						1

Parameter		XS 7 P	ool (Trav	is Dov	vn)			XS 8 I	Riffle (Travis	Down)		XS 9	Pool (T	ravis	Down)	1		XS 10	Pool (Travis	Down)	2	KS 11	Riffle (Travis	Down	1)
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	25.9						28.1						29.3						38.6						30.3					
Floodprone Width (ft)							150																		150					
BF Cross Sectional Area (ft2)	60						64.6						65.9						100						73.9					
BF Mean Depth (ft)	2.3						2.3						2.2						2.6						2.4					
BF Max Depth (ft)	3.9						3.3						3.7						4.3						3.4					
Width/Depth Ratio							12.2																		12.4					
Entrenchment Ratio							5.3																		5.0					
Bank Height Ratio							1																		1					
Wetted Perimeter (ft)	27.5						29.5						30.6						40.2						31.8					
Hydraulic Radius (ft)	2.2						2.2						2.2						2.5						2.3					
Substrate			•																											
d50 (mm)			•																											
d84 (mm)			•																											

Table 6B. Morphology and Hydraulic Monitoring Summary
Aycock Travis Creek (Downstream) - Stream and Wetland Restoration Site

Parameter		Y-00 (20	16)															
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Pattern																		
Channel Beltwidth (ft)	83	166	111															
Radius of Curvature (ft)	55	111	83															
Meander Wavelength (ft)	166	332	236															
Meander Width Ratio	3	6	4															
Profile																		
Riffle Length (ft)	16	87	54															
Riffle Slope (ft/ft)	0.00%	0.70%	0.19%															
Pool Length (ft)	27	70	43															
Pool Spacing (ft)	83	222	111															
Additonal Reach Parameters																		
Valley Length (ft)		632																
Channel Length (ft)		664																
Sinuosity		1.05																
Water Surface Slope (ft/ft)		0.001																
BF Slope (ft/ft)																		
Rosgen Classification		C/E																

Table 6C. Morphology and Hydraulic Monitoring Summary

Aycock Travis Creek (Upstream) - Stream and Wetland Restoration Site

Parameter		XS 12 Riffle (Travis Up)						XS 13	3 Pool	(Travi	s Up)			XS 14	Riffle	(Travi	is Up)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	29						26.9						32.8					
Floodprone Width (ft)													150					
BF Cross Sectional Area (ft2)	68.7						64.0						104.5					
BF Mean Depth (ft)	2.4						2.4						3.2					
BF Max Depth (ft)	3.4						3.9						4.8					
Width/Depth Ratio													10.3					
Entrenchment Ratio													4.6					
Bank Height Ratio													1.0					
Wetted Perimeter (ft)	30.4						28.8						35.0					
Hydraulic Radius (ft)	2.3						2.2						3.0					
Substrate																		
d50 (mm)																		
d84 (mm)																		

Table 6D. Morphology and Hydraulic Monitoring Summary
Aycock Travis Creek (Upstream) - Stream and Wetland Restoration Site

Parameter	M	Y-00 (20	016)															
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Pattern																		
Channel Beltwidth (ft)	83	166	111															
Radius of Curvature (ft)	55	111	83															
Meander Wavelength (ft)	166	332	236															
Meander Width Ratio	3	6	4															
Profile																		
Riffle Length (ft)	16	87	54															
Riffle Slope (ft/ft)	0.00%	0.70%	0.19%															
Pool Length (ft)	27	70	43															
Pool Spacing (ft)	83	222	111															
Additonal Reach Parameters																		
Valley Length (ft)		199																
Channel Length (ft)		209																
Sinuosity		1.05																
Water Surface Slope (ft/ft)		0.0009																
BF Slope (ft/ft)																		
Rosgen Classification		C/E																

Table 6E. Morphology and Hydraulic Monitoring Summary Aycock UT-1 - Stream and Wetland Restoration Site

Parameter		XS	1 Riffle	(UT 1))			XS	2 Rif	fle (U	Γ1)			X	S 3 Po	ol (UT	T 1)			XS	4 Riff	le (UI	Γ1)			XS	5 Riff	le (UT	. 1)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	9.3						8.8						8.4						9.3						9.6					
Floodprone Width (ft)	90						90												90						90					
BF Cross Sectional Area (ft2)	5.6						4.6						6.7						6.2						6.6					
BF Mean Depth (ft)	0.6						0.5						0.8						0.7						0.7					
BF Max Depth (ft)	1.1						0.7						1.3						1						1.1					
Width/Depth Ratio	15.4						16.8												14.0						14.0					
Entrenchment Ratio	9.7						10.2												9.7						9.4					
Bank Height Ratio	1.0						1.0												1.0						1.0					
Wetted Perimeter (ft)	9.7						9						8.9						9.7						10					
Hydraulic Radius (ft)	0.6						0.5						0.7						0.6						0.7					
Substrate																														
d50 (mm)																														
d84 (mm)																														

Parameter		XS	6 Riffle	(UT 1))			XS	7 Rif	fle (U	Γ1)			X	S 8 Po	ol (UT	· 1)			XS	9 Rif	fle (U	Γ1)			XS	10 Po	ol (UT	(1)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	6.9						7.5						7.8						7.9						7.6					
Floodprone Width (ft)	90						90												90											
BF Cross Sectional Area (ft2)	3.6						3.9						5.7						3						4.7					
BF Mean Depth (ft)	0.5						0.5						0.7						0.4						0.6					
BF Max Depth (ft)	0.7						0.7						1.2						0.7						1.1					
Width/Depth Ratio	13.2						14.4												20.8											
Entrenchment Ratio	13.0						12.0												11.4											
Bank Height Ratio	1.0						1.0												1.0											
Wetted Perimeter (ft)	7.2						7.8						8.3						8						8					
Hydraulic Radius (ft)	0.5						0.5						0.7						0.4						0.6					
Substrate																														
d50 (mm)																														
d84 (mm)																														

Parameter		XS 1	11 Riffle	(UT 1	1)			XS	12 Ri	ffle (U	T 1)			XS	13 Pc	ool (U	Γ1)			XS	14 Ri	ffle (U	T 1)			XS	15 Rif	ffle (UT	Г 1)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	7.4						8						8.6						6.4						7.1					
Floodprone Width (ft)	90						90												90						90					
BF Cross Sectional Area (ft2)	3.5						3.7						6.5						3.1						4					
BF Mean Depth (ft)	0.5						0.5						0.8						0.5						0.6					
BF Max Depth (ft)	0.8						0.7						1.2						0.7						0.9					
Width/Depth Ratio	15.6						17.3												13.2						12.6					
Entrenchment Ratio	12.2						11.3												14.1						12.7					
Bank Height Ratio	1.0						1.0												1.0						1.0					
Wetted Perimeter (ft)	7.8						8.5						9.2						6.8						7.4					
Hydraulic Radius (ft)	0.4						0.4						0.7						0.5						0.5					
Substrate																														
d50 (mm)																														
d84 (mm)																														

Table 6E continued. Morphology and Hydraulic Monitoring Summary Aycock UT-1 - Stream and Wetland Restoration Site

Parameter		XS	16 Riffl	e (UT	1)			XS	17 Rif	ffle (U	T 1)			XS	18 Ri	ffle (U	T 1)			XS	19 Pc	ool (UT	Γ1)			XS	20 Rif	fle (U	Т 1)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	9						8.5						7.1						7.6						9.1					
Floodprone Width (ft)	90						90						90												90					
BF Cross Sectional Area (ft2)	4.6						3.9						3.5						6.5						5.3					
BF Mean Depth (ft)	0.5						0.5						0.5						0.9						0.6					
BF Max Depth (ft)	0.8						0.7						0.6						1.3						0.9					
Width/Depth Ratio	17.6						18.5						14.4												15.6					
Entrenchment Ratio	10.0						10.6						12.7												9.9					
Bank Height Ratio	1.0						1.0						1.0												1.0					
Wetted Perimeter (ft)	9.3						8.7						7.4						8.2						9.4					
Hydraulic Radius (ft)	0.5						0.5						0.5						0.8						0.6					
Substrate																														
d50 (mm)																														
d84 (mm)																														

Parameter		XS	21 Poo	l (UT	1)			XS	22 Rif	fle (U	Т 1)			XS	23 Rif	fle (U	T 1)			XS	24 Rif	fle (U	T 1)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	8.3						7.2						7.6						8					
Floodprone Width (ft)							90						90						90					
BF Cross Sectional Area (ft2)	9.3						3.6						3.2						4					
BF Mean Depth (ft)	1.1						0.5						0.4						0.5					
BF Max Depth (ft)	2.1						0.7						0.6						0.7					
Width/Depth Ratio							14.4						18.1						16.0					
Entrenchment Ratio							12.5						11.8						11.3					
Bank Height Ratio							1.0						1.0						1.0					
Wetted Perimeter (ft)	9.5						7.5						9.3						9.3					
Hydraulic Radius (ft)	1						0.5						0.5						0.5					
Substrate																								
d50 (mm)																								
d84 (mm)							-																	

Table 6F. Morphology and Hydraulic Monitoring Summary Aycock UT-1 - Stream and Wetland Restoration Site

Parameter	MY	-00 (20	16)															
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Pattern																		
Channel Beltwidth (ft)	23	47	31															
Radius of Curvature (ft)	14	31	23															
Meander Wavelength (ft)	47	94	66															
Meander Width Ratio	3	6	4															
Profile																		
Riffle Length (ft)	9	70	16															
Riffle Slope (ft/ft)	0.01%	4.33%	2.23%															
Pool Length (ft)	4	23	9															
Pool Spacing (ft)	23	62	31															
Additonal Reach Parameters																		
Valley Length (ft)		1174																
Channel Length (ft)		1,291																
Sinuosity		1,291																
Water Surface Slope (ft/ft)		0.0189																
BF Slope (ft/ft)																		
Rosgen Classification		C/E																

Table 6G. Morphology and Hydraulic Monitoring Summary Aycock UT-2 - Stream and Wetland Restoration Site

Parameter			XS 1 Poo	ol (UT	2)			X	S 2 Ri	ffle (U	T 2)			XS 3 Ri	ffle (U	UT 2)			XS	4 Riffle	e (UT 2	2)			XS	5 Riff	fle (U	T 2)			y	KS 6 F	Riffle (UT 2	2)			XS	7 Poc	ol (UT	· 2)	
Dimension	MY 0	MY	1 MY2	MY	3 MY	4 MY	75 MY	0 MY	1 MY2	MY3	MY4	MY5 M	Y 0 M	Y1 MY	2 MY	3 MY4	MY5	MY 0	MY1	MY2 N	MY3 N	MY4	MY5 I	MY 0	MY1	MY2	MY3	MY4	MY	5 MY	0 MY	1 MY	/2 MY	Y3 N	1Y4 N	AY5 I	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	6.5						4.8					5	.7					6.4						8.4						6.9							8.3					
Floodprone Width (ft)							90					9	0					90						90						90												
BF Cross Sectional Area (ft2)	3.8						1					1	.7					1						3.1						2.3							5.1					
BF Mean Depth (ft)	0.6						0.2					0	.3					0.2						0.4						0.3							0.6					
BF Max Depth (ft)	1						0.3					0	.5					0.4						0.7						0.6							1.1					
Width/Depth Ratio							23.)				19	0.1					41.0						22.8						20.7	7											
Entrenchment Ratio							18.	3				15	5.8					14.1						10.7						13.0)											
Bank Height Ratio							1.0					1	.0					1.0						1.0						1.0												
Wetted Perimeter (ft)	6.9						4.9					5	.8					6.5						8.6						7.0							8.8					
Hydraulic Radius (ft)	0.6						0.2					0	.3					0.2						0.4						0.3							0.6					
Substrate																																										
d50 (mm)												-																														
d84 (mm)																																								,		

Parameter		XS	8 Riffle	e (UT	2)			XS	9 Rif	fle (UT	Γ2)			XS	10 Po	ol (UT	Γ 2)			XS	S 11 P	ool (U	Γ2)			XS	12 Rif	ffle (U	T 2)			XS	13 Rif	ffle (U	T 2)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	8.6						7.4						7.5						6.2						8.3						7.2					
Floodprone Width (ft)	90						90																		90						90					
BF Cross Sectional Area (ft2)	3.6						4.2						5.2						3.5						3.2						2.1					
BF Mean Depth (ft)	0.4						0.6						0.7						0.6						0.4						0.3					
BF Max Depth (ft)	0.6						0.8						1.3						0.8						0.7						0.4					
Width/Depth Ratio	20.5						13.0																		21.5						24.7					
Entrenchment Ratio	10.5						12.2																		10.8						12.5					
Bank Height Ratio	1.0						1.0																		1.0						1.0					
Wetted Perimeter (ft)	8.8						7.7						8.1						6.6						8.6						7.3					
Hydraulic Radius (ft)	0.4						0.5						0.7						0.5						0.4						0.3					
Substrate																																				
d50 (mm)																																				
d84 (mm)																																				

Table 6H. Morphology and Hydraulic Monitoring Summary Aycock UT-2 - Stream and Wetland Restoration Site

Parameter	M	Y-00 (2	016)															
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Pattern																		
Channel Beltwidth (ft)	23	47	31															
Radius of Curvature (ft)	14	31	23															
Meander Wavelength (ft)	47	94	66															
Meander Width Ratio	3	6	4															
Profile																		
Riffle Length (ft)	9	23	14															
Riffle Slope (ft/ft)	0.00%	5.24%	2.88%															
Pool Length (ft)	5	17	10															
Pool Spacing (ft)	23	62	31															
Additonal Reach Parameters																		
Valley Length (ft)		614																
Channel Length (ft)		675																
Sinuosity		1.1																
Water Surface Slope (ft/ft)		0.0301			•	·		•	·		•	•		•	·		·	
BF Slope (ft/ft)					•	·		•	·		•	•		•	·		·	
Rosgen Classification		C/E			•			•			•	•		•				

Table 6I. Morphology and Hydraulic Monitoring Summary Aycock UT-3 - Stream and Wetland Restoration Site

Parameter		XS	1 Riffle	(UT	3)			XS	2 Riff	le (U	Г 3)			XS	3 Poo	ol (UT	T 3)			XS	4 Riff	le (U	Т 3)			XS	5 Riff	le (U	Γ3)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	6.5						4.7						5						7						5.3					
Floodprone Width (ft)	10						20												20						20					
BF Cross Sectional Area (ft2)	2.7						1.9						3.6						2.2						1.2					
BF Mean Depth (ft)	0.4						0.4						0.7						0.3						0.2					
BF Max Depth (ft)	0.6						0.6						1						0.5						0.5					
Width/Depth Ratio	15.6						11.6												22.3						23.4					
Entrenchment Ratio	1.5						4.3												2.9						3.8					
Bank Height Ratio	1.0						1.0												1.0						1.0					
Wetted Perimeter (ft)	6.8						5.0						5.7						7.1						5.7					
Hydraulic Radius (ft)	0.4						0.4						0.6						0.3						0.2					
Substrate															·															
d50 (mm)															·															
d84 (mm)																														

Table 6J. Morphology and Hydraulic Monitoring Summary Aycock UT-3 - Stream and Wetland Restoration Site

Parameter	M	Y-00 (20	016)															
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Pattern																		
Channel Beltwidth (ft)	23	47	31															
Radius of Curvature (ft)	14	31	23															
Meander Wavelength (ft)	47	94	66															
Meander Width Ratio	3	6	4															
Profile																		
Riffle Length (ft)	8	24	14															
Riffle Slope (ft/ft)	0.52%	2.54%	1.71%															
Pool Length (ft)	6	10	8															
Pool Spacing (ft)	23	62	31															
Additonal Reach Parameters																		
Valley Length (ft)		193																
Channel Length (ft)		212																
Sinuosity		1.1																
Water Surface Slope (ft/ft)		0.0092																
BF Slope (ft/ft)																		
Rosgen Classification		C/E																

Table 6K. Morphology and Hydraulic Monitoring Summary Aycock UT-4 - Stream and Wetland Restoration Site

Parameter		XS	1 Riffle	e (UT	4)			X	S 2 Po	ol (UT	· 4)			XS	3 Rif	fle (UT	Γ 4)			X	S 4 Po	ol (UT	T 4)			XS	5 5 Rif	fle (UT	Γ 4)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	8.3						8.5						8.6						8.5						8					
Floodprone Width (ft)	50												50												50					
BF Cross Sectional Area (ft2)	3.7						6.4						4.3						6.2						4.3					
BF Mean Depth (ft)	0.4						0.8						0.5						0.7						0.5					
BF Max Depth (ft)	0.6						1.5						0.8						1.2						0.7					
Width/Depth Ratio	18.6												17.2												14.9					
Entrenchment Ratio	6.0												5.8												6.3					
Bank Height Ratio	1.0												1.0												1.0					
Wetted Perimeter (ft)	8.6						9.2						9.0						9.1						8.3					
Hydraulic Radius (ft)	0.4						0.7						0.5						0.7						0.5					
Substrate																														
d50 (mm)																														
d84 (mm)																														

Parameter	XS 6 Riffle (UT 4)							XS 7 Riffle (UT 4)							XS 8 Riffle (UT 4)						
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5			
BF Width (ft)	8.1						9.9						10.9								
Floodprone Width (ft)	50						50						50								
BF Cross Sectional Area (ft2)	3.5						5.6						5.6								
BF Mean Depth (ft)	0.4						0.6						0.5								
BF Max Depth (ft)	0.6						0.9						0.8								
Width/Depth Ratio	18.7						17.5						21.2								
Entrenchment Ratio	6.2						5.1						4.6								
Bank Height Ratio	1.0						1.0						1.0								
Wetted Perimeter (ft)	8.4						10.2						11.1								
Hydraulic Radius (ft)	0.4						0.6						0.5								
Substrate																					
d50 (mm)																					
d84 (mm)																					

Table 6L. Morphology and Hydraulic Monitoring Summary Aycock UT-4 - Stream and Wetland Restoration Site

Parameter	MY-00 (2016)																	
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Pattern																		
Channel Beltwidth (ft)	28	56	38															
Radius of Curvature (ft)	17	38	28															
Meander Wavelength (ft)	56	113	80															
Meander Width Ratio	3	6	4															
Profile																		
Riffle Length (ft)	12	35	16															
Riffle Slope (ft/ft)	0.61%	2.42%	1.28%															
Pool Length (ft)	14	42	22															
Pool Spacing (ft)	28	75	38															
Additonal Reach Parameters																		
Valley Length (ft)		278																
Channel Length (ft)		306																
Sinuosity		1.1																
Water Surface Slope (ft/ft)		0.0066																
BF Slope (ft/ft)																		
Rosgen Classification		C/E																

Appendix C. Vegetation Data

Table 7. Planted Woody Vegetation
Table 8. Total Planted Stems by Plot and Species
Vegetation Plot Photographs

Table 7. Planted Bare Root Woody Vegetation

Species	Quantity
River birch (Betula nigra)	400
Ironwood (Carpinus caroliniana)	1000
Beautyberry (Callicarpa americana)	600
Flowering dogwood (Cornus florida)	200
Silky dogwood (Cornus amomum)	2000
Persimmon (Diospyros virginiana)	200
Black gum (Nyssa sylvatica var. biflora)	400
Sycamore (Platanus occidentalis)	400
White oak (Quercus alba)	400
Cherrybark oak (Quercus falcata var. pagodifolia)	600
Swamp chestnut oak (Quercus michauxii)	500
Water oak (Quercus nigra)	300
Willow oak (Quercus phellos)	700
Northern red oak (Quercus rubra)	400
Elderberry (Sambucus canadensis)	2500
TOTAL	10,600

Table 8. Planted Stems by Plot and Species

Species	CommonName	Total Planted Stems*	# plots	avg# stems	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Betula nigra	river birch	9	4	2.25					1	5		1						2
Carpinus caroliniana	American hornbeam	7	3	2.33								2			1	4		
Cornus amomum	silky dogwood	57	12	4.75	9	3	3	3	4	10	10	4	4	4	2		1	
Cornus florida	flowering dogwood	4	1	4											4			
Diospyros virginiana	common persimmon	2	2	1								1		1				
Fraxinus pennsylvanica	green ash	3	2	1.5												2		1
Nyssa sylvatica	blackgum	6	3	2							1	1				4		
Platanus occidentalis	American sycamore	5	3	1.67		1		3				1						
Quercus	oak	11	6	1.83			1					1	1	2			4	2
Quercus alba	white oak	2	1	2	2													
Quercus pagoda	cherrybark oak	6	5	1.2					2						1	1	1	1
Quercus phellos	willow oak	18	8	2.25	3	2	2	1	1					3	2		4	
Quercus rubra	northern red oak	13	6	2.17	2	1	4	3		2								1
Sambucus canadensis	Common Elderberry	62	13	4.77		11	3	2	3	3	1	4	7	4	5	13	2	4
14	14	205	14		16	18	13	12	11	20	12	15	12	14	15	24	12	11
			Stems	per Acre	648	729	526	486	445	810	486	607	486	567	607	972	486	445
		Tota	al Stems	per Acre							5	93						

^{*} All stems reported are planted bare root stems, no livestakes occur within the plots.

Aycock Springs Baseline Vegetation Monitoring Photographs Taken April 2016

Aycock Springs Baseline Vegetation Monitoring Photographs Taken April 2016 (continued)

Appendix D. As-built Plan Sheets

Sheet Number	Sheet Name
01	Title Sheet
02	Legend
03	Key Sheet – Blank
04 Thru 4H	Plan Construction
5A (1 Thru 78)	As-Built Plan Survey
6 Thru 6H	As-Built Plan Overlay

ITE

5

7

AS-BUILT SURVEY AND RECORD DRAWINGS AYCOCK SPRINGS SITE

SHEET TOTAL NO. SHEETS N.C. AYCOCK SPRINGS SITE

LOCATION: ALAMANCE COUNTY, NORTH CAROLINA

START

STA 10+00

ŬT3

PSH 04B

END -UT4-

STA 14+13

Gibsonville Rd

TYPE OF WORK: STREAM AND WETLAND RESTORATION AND ENHANCEMENT (CLEARING, GRUBBING, GRADING, EROSION CONTROL AND PLANTING)

SHEET NUMBER START -UTI-STA 10+04 UT2 6 THRU 5H STA 10+00

PSH 04H

END -UTI-

END -TRAVIS-STA 30+95

PSH 04G END -UT2-

TRAVIS

PSH /04C

NOTE: TRAVIS CREEK IS LOCATED IN A FEMA DETAILED STUDY AREA.PROJECT TO BE CONSTRUCTED ACCORDING TO APPROVED CONSTRUCTION DOCUMENTS.ANY DEVIATIONS FROM THE PLANS WILL REQUIRE APPROVAL FROM THE ENGINEER AND FLOODPLAIN ADMINISTRATOR

INDEX OF SHEETS

Plan Construction

As-Built Plan Overlag

THE STATE OF NORTH CAROLINA, DIVISION OF MITIGATION SERVICES

> DMS PROJECT ID# 96312 SPO FILE # 01-AA NC DMS CONTRACT # 5791 RFP# 16-005568 LAT 36.127271 N LONG 79.525214 W

> > DocuSigned by:

VICINITY MAF

START -TRAVIS-

STA 10+00

PROPOSED LENGTH OF TRAVIS = 1550 LF PROPOSED LENGTH OF UT3 = 212 LF PROPOSED LENGTH OF UT1 = 1315 LF PROPOSED LENGTH OF UT2 = 675 LF PROPOSED LENGTH OF UT4= 413 LF TOTAL STREAM LENGTH = 4165 LF

TART -UT4-

UT4

STA 19+00

00	RESTORATION LEVEL	STREAM (linear footage)	RIPARIAN WETLAND (acreage)	NONRIPARIAN WETLAND (acreage)	
	RESTORATION	3357	0.5	0.0	
_	ENHANCEMENT	677	1.5	0.0	
۱ '	TOTALS	4034	2.0	0.0	
إ	MITIGATION UNITS	3628 SMUs	0.5 RIPARIAN WMUs	0.0 NONRIPARIAN WMUs	

PSH

Note: Not to Scale

*S.U.E. = Subsurface Utility Engineering Not all Symbols used in Plans

BOUNDARIES AND PROPERTY:
State Line
County Line · · · · · · · · · · · · · · · · · · ·
Township Line · · · · · · · · · · · · · · · · · · ·
City Line
Reservation Line · · · · · · · · · · · · · · · · · · ·
Property Line
Existing Iron Pin
Property Corner
Property Monument
Temporary Fence
Proposed Woven Wire Fence
Proposed Chain Link Fence
Proposed Barbed Wire Fence
Tree Protection Fence
Existing Wetland Boundary
Proposed Wetland Boundary
Proposed Conservation Easement E
Construction Limits · · · · · · · · · · · · · · · · · · ·
Limits Of Disturbance
Gate
Benchmark
BUILDINGS AND OTHER CULTURE:
Delebinos ind officia celiere.
Sign §
Sign §
Sign
Sign Well Foundation Area Outline
Sign ♀ Well ♀ Foundation □
Sign Sign Sign Sign Sign Sign Sign Sign
Sign Well Foundation Area Outline Recreational Structure Building
Sign Well Foundation Area Outline Recreational Structure Building School
Sign Well Foundation Area Outline Recreational Structure Building School Church
Sign Well Foundation Area Outline Recreational Structure Building School Church HYDROLOGY: Stream or Body of Water
Sign Well Foundation Area Outline Recreational Structure Building School Church HYDROLOGY:
Sign Well Foundation Area Outline Recreational Structure Building School Church HYDROLOGY: Stream or Body of Water Hydro, Pool or Reservoir
Sign Well Foundation Area Outline Recreational Structure Building School Church HYDROLOGY: Stream or Body of Water Hydro, Pool or Reservoir River Basin Buffer
Sign Well Foundation Area Outline Recreational Structure Building School Church HYDROLOGY: Stream or Body of Water Hydro, Pool or Reservoir River Basin Buffer RBB
Sign Well Foundation Area Outline Recreational Structure Building School Church HYDROLOGY: Stream or Body of Water Hydro, Pool or Reservoir River Basin Buffer Flow Arrow Disappearing Stream
Sign Well Foundation Area Outline Recreational Structure Building School Church HYDROLOGY: Stream or Body of Water Hydro, Pool or Reservoir River Basin Buffer Flow Arrow Disappearing Stream Spring
Sign Well Foundation Area Outline Recreational Structure Building School Church HYDROLOGY: Stream or Body of Water Hydro, Pool or Reservoir River Basin Buffer Flow Arrow Disappearing Stream Spring Bankfull
Sign Well Foundation Area Outline Recreational Structure Building School Church HYDROLOGY: Stream or Body of Water Hydro, Pool or Reservoir River Basin Buffer Flow Arrow Disappearing Stream Spring Bankfull Thalweg
Sign Well Foundation Area Outline Recreational Structure Building School Church HYDROLOGY: Stream or Body of Water Hydro, Pool or Reservoir River Basin Buffer Flow Arrow Disappearing Stream Spring Bankfull Thalweg Top Of Bank
Sign Well Foundation Area Outline Recreational Structure Building School Church HYDROLOGY: Stream or Body of Water Hydro, Pool or Reservoir River Basin Buffer Flow Arrow Disappearing Stream Spring Bankfull Thalweg Top Of Bank Vernal Pool

LEGEND

RAILROADS:	
Standard Guage	CSX TRANSPORTATION
RR Signal Milepost	⊙ MILEPOST 35
Switch · · · · · · · · · · · · · · · · · · ·	SWITCH
RR Abandoned · · · · · · · · · · · · · · · · · · ·	
RR Dismantled · · · · · · · · · · · · · · · · · · ·	
ROADS AND RELATED FEATURE	'S:
Existing Edge of Pavement	
Existing Curb	
Existing Metal Guardrail	
Existing Cable Guiderail	
VEGETATION:	
Single Tree	යි
Single Shrub	\$
Hedge	
Woods Line	
Orchard · · · · · · · · · · · · · · · · · · ·	සි සි සි සි
Vineyard · · · · · · · · · · · · · ·	Vineyard
EXISTING STRUCTURES:	
MAJOR:	
Bridge, Tunnel or Box Culvert	CONC
Bridge Wing Wall, Head Wall and End Wall	CONC WW
MINOR:	
Head and End Wall · · · · · · · · · · · · · · · · · ·	CONC HW
Pipe Culvert	
Footbridge · · · · · · · · · · · · · · · · · · ·	
Drainage Box: Catch Basin, DI or JB · · · · · · · ·	СВ
Paved Ditch Gutter	
Storm Sewer Manhole · · · · · · · · · · · · · · · · · · ·	(S)
Storm Sewer	s
SANITARY SEWER:	
Sanitary Sewer Manhole (Located By Others)	S
Sanitary Sewer Cleanout	(±)
U/G Sanitary Sewer Line (Located By Others)	
Above Ground Sanitary Sewer	A/G Sanitary Sewer
Recorded SS Forced Main Line	FSS
STREAM WORK:	
STREAM STRUCTURES:	n
Rock Crossvane	Bassa
Rock Vane · · · · · · · · · · · · · · · · · · ·	22222Q

	SH	EET NAME				SHEET	NUMBER
	LE	EGEND					02
PROJECT NAME:	AYCO0	CK STREAM	AND	WETLAND	RES	TORATION	SITE
		COUNTY:	AL.	AMANCE		DATE:	2016

STREAM FEATURES: Cross Vane Constructed Riffle Log Vane Structure Number Floodplain Interceptor \longrightarrow Terracell

EROSION CONTROL FEATURES:

Stream Crossing	
Temporary Construction Entrance/Exit	
Silt Fence	
Special Sediment Control Fence Break	$\nabla\!\nabla$
Haul Road	
Impervious Dike	

PLANTING ZONES:

Stream–Side Assemblage	9
Piedmont/Low Mountain Alluvial Forest	n
Dry–Mesic Oak Hickory Forest	
Marsh Treatment	

		KE	SHEET NAME EY SHEET
		PROJECT NAME: AYC	EY SHEET COCK STREAM AND WE
			COUNTY: ALAMAN
		Axiom Environmental, Inc.	SUNGATE

PURPOSELY LEFT BLANK

Note: Not to Scale

*S.U.E. = Subsurface Utility Engineering Not all Symbols used in Plans

BOUNDARIES AND PROPERTY:
State Line
County Line · · · · · · · · · · · · · · · · · · ·
Township Line · · · · · · · · · · · · · · · · · · ·
City Line
Reservation Line · · · · · · · · · · · · · · · · · · ·
Property Line
Existing Iron Pin
Property Corner
Property Monument
Temporary Fence
Proposed Woven Wire Fence
Proposed Chain Link Fence
Proposed Barbed Wire Fence
Tree Protection Fence
Existing Wetland Boundary
Proposed Wetland Boundary
Proposed Conservation Easement E
Construction Limits · · · · · · · · · · · · · · · · · · ·
Limits Of Disturbance
Gate
Benchmark
BUILDINGS AND OTHER CULTURE:
Delebinos ind officia celiere.
Sign §
Sign §
Sign
Sign Well Foundation Area Outline
Sign ♀ Well ♀ Foundation □
Sign Sign Sign Sign Sign Sign Sign Sign
Sign Well Foundation Area Outline Recreational Structure Building
Sign Well Foundation Area Outline Recreational Structure Building School
Sign Well Foundation Area Outline Recreational Structure Building School Church
Sign Well Foundation Area Outline Recreational Structure Building School Church HYDROLOGY: Stream or Body of Water
Sign Well Foundation Area Outline Recreational Structure Building School Church HYDROLOGY:
Sign Well Foundation Area Outline Recreational Structure Building School Church HYDROLOGY: Stream or Body of Water Hydro, Pool or Reservoir
Sign Well Foundation Area Outline Recreational Structure Building School Church HYDROLOGY: Stream or Body of Water Hydro, Pool or Reservoir River Basin Buffer
Sign Well Foundation Area Outline Recreational Structure Building School Church HYDROLOGY: Stream or Body of Water Hydro, Pool or Reservoir River Basin Buffer RBB
Sign Well Foundation Area Outline Recreational Structure Building School Church HYDROLOGY: Stream or Body of Water Hydro, Pool or Reservoir River Basin Buffer Flow Arrow Disappearing Stream
Sign Well Foundation Area Outline Recreational Structure Building School Church HYDROLOGY: Stream or Body of Water Hydro, Pool or Reservoir River Basin Buffer Flow Arrow Disappearing Stream Spring
Sign Well Foundation Area Outline Recreational Structure Building School Church HYDROLOGY: Stream or Body of Water Hydro, Pool or Reservoir River Basin Buffer Flow Arrow Disappearing Stream Spring Bankfull
Sign Well Foundation Area Outline Recreational Structure Building School Church HYDROLOGY: Stream or Body of Water Hydro, Pool or Reservoir River Basin Buffer Flow Arrow Disappearing Stream Spring Bankfull Thalweg
Sign Well Foundation Area Outline Recreational Structure Building School Church HYDROLOGY: Stream or Body of Water Hydro, Pool or Reservoir River Basin Buffer Flow Arrow Disappearing Stream Spring Bankfull Thalweg Top Of Bank
Sign Well Foundation Area Outline Recreational Structure Building School Church HYDROLOGY: Stream or Body of Water Hydro, Pool or Reservoir River Basin Buffer Flow Arrow Disappearing Stream Spring Bankfull Thalweg Top Of Bank Vernal Pool

LEGEND

RAILROADS:	
Standard Guage	CSX TRANSPORTATION
RR Signal Milepost	⊙ MILEPOST 35
Switch · · · · · · · · · · · · · · · · · · ·	SWITCH
RR Abandoned · · · · · · · · · · · · · · · · · · ·	
RR Dismantled · · · · · · · · · · · · · · · · · · ·	
ROADS AND RELATED FEATURE	'S:
Existing Edge of Pavement	
Existing Curb	
Existing Metal Guardrail	
Existing Cable Guiderail	
VEGETATION:	
Single Tree	යි
Single Shrub	\$
Hedge	
Woods Line	
Orchard · · · · · · · · · · · · · · · · · · ·	සි සි සි සි
Vineyard · · · · · · · · · · · · · ·	Vineyard
EXISTING STRUCTURES:	
MAJOR:	
Bridge, Tunnel or Box Culvert	CONC
Bridge Wing Wall, Head Wall and End Wall	CONC WW
MINOR:	
Head and End Wall · · · · · · · · · · · · · · · · · ·	CONC HW
Pipe Culvert	
Footbridge · · · · · · · · · · · · · · · · · · ·	
Drainage Box: Catch Basin, DI or JB · · · · · · · ·	СВ
Paved Ditch Gutter	
Storm Sewer Manhole · · · · · · · · · · · · · · · · · · ·	(S)
Storm Sewer	s
SANITARY SEWER:	
Sanitary Sewer Manhole (Located By Others)	S
Sanitary Sewer Cleanout	(±)
U/G Sanitary Sewer Line (Located By Others)	
Above Ground Sanitary Sewer	A/G Sanitary Sewer
Recorded SS Forced Main Line	FSS
STREAM WORK:	
STREAM STRUCTURES:	n
Rock Crossvane	Bassa
Rock Vane · · · · · · · · · · · · · · · · · · ·	22222Q

	SH	EET NAME				SHEET	NUMBER
	LE	EGEND					02
PROJECT NAME:	AYCO0	CK STREAM	AND	WETLAND	RES	TORATION	SITE
		COUNTY:	AL.	AMANCE		DATE:	2016

STREAM FEATURES: Cross Vane Constructed Riffle Log Vane Structure Number Floodplain Interceptor \longrightarrow Terracell

EROSION CONTROL FEATURES:

Stream Crossing	
Temporary Construction Entrance/Exit	
Silt Fence	
Special Sediment Control Fence Break	$\nabla\!\nabla$
Haul Road	
Impervious Dike	

PLANTING ZONES:

Stream–Side Assemblage · · · · · · · · · · · · · · · · · · ·			
Piedmont/Low Mountain Alluvial Forest	n 		
Dry–Mesic Oak Hickory Forest			
Marsh Treatment			

DEED REFERENCE(S):

BEING A PORTION OF THE PROPERTY RECORDED IN D.B. 2468, PG. 268, D.B. 1632, PG. 729, D.B. 2832, PG. 522, D.B. 935, PG. 328 & D.B. 257, PG. 317 OF THE ALAMANCE COUNTY REGISTER OF DEEDS.

MAP REFERENCE(S):

- P.B. 11, PG-22 P.B. 136, PG 98
- P.B. 16, PG. 36

_	 	-		

CONSERVATION EASEMENT ACREAGE DATA:				
SECTION "A"	1.64 ACRES±			
SECTION "B"	4.35 ACRES±			
SECTION "C"	4.55 ACRES±			
SECTION "D" 2.72 ACRES±				

TOTAL CONSERVATION EASEMENT IS 13.26 ACRES± INCLUDING A PORTION OF THE 30' DUKE ENERGY CAROLINAS EASEMENT AND EXCLUDING ALL OTHER EASEMENTS AND RIGHT-OF-WAYS BY COORDINATE COMPUTATION

SURVEYORS CERTIFICATION(S)

Surveyor's disclaimer: No attempt was made to locate any cemeteries, wetlands, hazardous material sites, underground or aboveground utilities or any other features above, or below ground other than those shown.

I certify that the survey is of another category (as-built survey), such as the recombination of existing parcels, a court-ordered survey, or other exception to the definition of subdivision.

I certify that this plat does not meet G.S. 47-30 as amended.

I, John A. Rudolph, certify that this project was completed under my direct and responsible charge from an actual survey made under my supervision; that this As-built survey was performed at the 95 percent confidence level to meet Federal Geographic Data Committee Standards; that this survey was performed to meet the requirements for a topographic/planimetric survey to the accuracy of Class B and vertical accuracy when applicable to the Class B standard, and that the original data was obtained on April, 2016; that the survey was completed on April 20, 2016; and all coordinates are based on NC Grid 'NAD '83(2011) and all elevations are assumed elevations.

5688 U.S. Hwy. 70 East Goldsboro, NC 27534 Tel.: (919) 751-0075 k2design@suddenlink.net

CROSS-SECTIONS COORDINATE TABLE (RIGHT SIDE OF X-SECTIONS FACING UP-STREAM)

EASTING

X-SECTION # NORTHING

X OCOTION*	1401(11111140	
UT1 XS1	865477.99	1846123.15
UT1 XS2	865506.17	1846093.95
UT1 XS3	865524.30	1846071.52
UT1 XS4	865526.60	1846057.57
UT1 XS5	865539.10	1846027.81
UT1 XS6	865624.21	1846015.95
UT1 XS7	865647.64	1846020.31
UT1 XS8	865666.77	1846023.90
UT1 XS9	865724.40	1846044.15
UT1 XS10	865753.08	1846070.28
UT1 XS11	865787.07	1846085.09
UT1 XS12	865885.58	1846106.96
UT1 XS13	865913.32	1846110.57
UT1 XS14	865928.05	1846120.42
UT1 XS15	866070.96	1846114.15
UT1 XS16	866098.81	1846120.71
UT1 XS17	866131.99	1846125.26
UT1 XS18	866213.91	1846123.59
UT1 XS19	866252.20	1846119.44
UT1 XS20	866270.25	1846130.12
UT1 XS21	866361.34	1846134.22
UT1 XS22	866397.03	1846097.81
UT1 XS23	866443.72	1846074.50
UT1 XS24	866471.55	1846066.23
UT2 XS1	865614.09	1845993.04
UT2 XS2	865644.70	1845964.24
UT2 XS3	865671.76	1845964.52
UT2 XS4	865689.10	1845959.17
UT2 XS5	865721.71	1845942.33
UT2 XS6	865748.75	1845929.25
UT2 XS7	865758.81	1845928.31
UT2 XS8	865833.03	1845912.00
UT2 XS9	865917.77	1845890.85
UT2 XS10	865945.72	1845876.11
UT2 XS11	865974.64	1845883.14
UT2 XS12	866024.13	1845861.08
UT2 XS13	866045.17	1845854.01
TC XS1	864899.07	1845219.31
TC XS2	864936.82	1845169.12
TC XS3	864966.27	1845109.18
TC XS4	865054.51	1845092.52
TC XS5	865099.76	1845091.27
TC XS6	865132.66	1845061.06
TC XS7	865184.57	1845004.10
TC XS8	865228.55	1844984.69
TC XS9	865252.45	1844976.83
TC XS10	865283.48	1844938.53
TC XS11	865348.12	1844925.91
TC XS12	865951.17	1844679.00
TC XS13	865990.76	1844654.41
TC XS14	866015.20	1844619.34
.07.017	300010.20	1077010.04

CROSS-SECTIONS COORDINATE TABLE (RIGHT SIDE OF X-SECTIONS FACING UP-STREAM)

NORTHING	EASTING
866027.96	1844677.32
866048.50	1844670.92
866065.02	1844670.86
866095.80	1844678.65
866115.76	1844683.13
866395.77	1844324.79
866433.74	1844295.83
866452.41	1844304.89
866465.19	1844312.40
866479.76	1844302.77
866508.79	1844290.93
866533.04	1844286.93
866572.27	1844283.32
	NORTHING 866027.96 866048.50 866065.02 866095.80 866115.76 866395.77 866433.74 866452.41 866465.19 866479.76 866508.79 866533.04

CVS PLOTS COORDINATE TABLE (COORDINTATE AT THE PLOT ORIGIN)				
CVS PLOT#	NORTHING	EASTING		
1	866304.98	1846088.66		
2	866123.93	1846075.82		
3	865871.13	1846120.69		
4	865975.08	1845906.36		
5	865680.90	1845904.97		
6	865530.96	1846111.98		
7	864962.11	1845223.58		
8	865074.64	1845140.02		
9	865203.00	1845062.38		
10	865842.83	1844791.82		
11	866126.70	1844650.57		
12	866242.15	1844459.89		
13	866396.00	1844262.15		
14	866526.08	1844324.39		

Species	Quantity
River birch (Betula nigra)	400
Ironwood (Carpinus caroliniana)	1000
Beautyberry (Callicarpa americana)	600
Flowering dogwood (Cornus florida)	200
Silky dogwood (Cornus amomum)	2000
Persimmon (Diospyros virginiana)	200
Black gum (Nyssa sylvatica var. biflora)	400
Sycamore (Platanus occidentalis)	400
White oak (Quercus alba)	400
Cherrybark oak (Quercus pagoda var. pagodifolia)	600
Swamp chestnut oak (Quercus michauxii)	500
Water oak (Quercus nigra)	300
Willow oak (Quercus phellos)	700
Northern red oak (Quescus ruba)	400
Elderberry (Sambucus canadensis)	2500
TOTAL:	10,600

(VEGETATION TABLE PROVIDED BY **AXIOM ENVIRONMENTAL)**

REVISIONS				
REVISION NUMBERS	DATE	DESCRIPTION	BY	
1	06/02/16	PRE-CONSTRUCTION TRIBUTARIES CENTERLINES ADDED PER NC DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES	J.A.R.	

RESTORATION SYSTEMS, LLC

RESTORATION

1101 HAYNES STREET SUITE 211 RALEIGH, NC 27604

SHEET 5A (1 OF 78) AS-BUILT SURVEY

THE STATE OF NORTH CAROLINA, **DIVISION OF** MITIGATION SERVICES DMS PROJECT ID# 96312 SPO FILE # 01-AA NC DMS CONTRACT # 5791 RFP# 16-005568

AYCOCK SPRINGS STREAM AND WETLAND RESTORATION SITE BOONE STATION TOWNSHIP ALAMANCE COUNTY NORTH CAROLINA

200

GRAPHIC SCALE 1" = 100"

DRAWN BY: FGR

WG. NO.: RSS112AB16

DATE: 07/08/16 SURVEYED BY: J.A.R. **DESIGN GROUP, P.A**

NATH CAROL

LEGEND:

ISS - IRON STAKE SET

ECM - EXISTING CONCRETE MARKER

EIP - EXISTING IRON PIPE

EN - EXISTING NAIL

MNS - MAG NAIL SET **EIS - EXISTING IRON STAKE**

EPP - EXISTING PUMP PIPE

PPS - PUMP PIPE SET

PTI - PINCHED TOP IRON PIPE

NMC - NON-MONUMENTED CORNER

R/W - RIGHT OF WAY

EOP - EDGE OF PAVEMENT

CPP - CORRUGATED PLASTIC PIPE

CMP - CORRUGATED METAL PIPE

UP - UTILITY POLE

BK - BOOK D.B. - DEED BOOK

No. 5 REBAR FLUSH WITH GRADE WITH AN ALUMINUM 3 1/4" CAP

 INSCRIBED: "STATE OF NORTH CAROLINA CONSERVATION EASEMENT"

▲ "FIXE" 3/8" BOLT SET IN ROCK

- CONSERVATION EASEMENT LINE ---- -- TIE DOWN LINE RIGHT OF WAY LINE OR ADJOINER LINE

ACCESS EASEMENTS

POST-CONSTRUCTION

POST-CONSTRUCTION MONITORING REACH CENTERLINE

MODIFIED REACH CENTERLINE PRE-CONSTRUCTION TRIBUTARY CENTERLINE

LOG CROSS VANE

LOG VANE

ROCK CROSS VANE

DOUBLE LOG VANE

ADDED LOG CROSS VANE ADDED ROCK CROSS VANE

ADDED LOG VANE **CROSS-SECTION**

ORIGIN POINT ON CVS PLOTS

CVS PLOTS

NOT CONSTRUCTED

GROUNDWATER GAUGE

PERMANENT STREAM CROSSING

TERRACELL

STREAM GAUGE

	_

WETLAND RESTORATION AREA

LINE DATA ALONG SECTION "A"				
LINE	BEARING	DISTANCE		
L1	\$18°26'06"E	73.17'		
L2	S43°40'04"E	52.80'		
L3	S15°51'03"E	104.35'		
L4	S04°35'05"W	270.79'		
L5	S07°10'25"W	36.12'		
L6	N73°00'24"W	131.15'		
L7	N01°54'04"W	36.36'		
L8	N03°27'06"E	200.90		
L9	N22°53'28"W	153.44'		
L10	N09°09'44"W	113.21'		
L11	S83°37'05"E	131.12'		

$\overline{}$		
	LINE DATA ALC SECTION "B	
LINE	BEARING	DISTANCE
L12	S07°32'58"W	101.26'
L13	S11°54'22"W	108.00'
L14	S02°02'44"E	214.88'
L15	S55°47'00"E	68.23'
L16	S04°11'03"E	226.13
L17	N88°34'04"W	69.47'
L18	N02°43'35"W	73.00'
L19	N59°32'04"W	34.24'
L20	S88°09'09"W	53.85'
L21	N17°39'00"W	80.16'
L22	N57°37'10"W	84.29'
L23	N28°59'07"W	227.76'
L24	N13°36'47"W	323.93'
L25	N10°19'58"W	154.68'
L26	N59°50'51"E	65.80'
L27	S77°18'23"E	72.59'
L28	S16°20'55"E	90.94'
L29	S13°37'32"E	239.62'
L30	S85°33'45"E	60.71'
L31	N08°13'11*E	155.29'
L32	S73°00'24"E	134.48'

L33	S81°17'19"E	218.68'
L34	S02°07'27"W	218.19'
L35	S39°40'04"E	50.16'
L36	S08°15'08"E	69.12'
L37	S44°22'35"E	89.21'
L38	S27°22'11"E	115.42'
L39	S46°50'51"E	76.15'
L40	N24°16'44"E	187.51'
L41	S14°06'19"E	293.34'
L42	S35°27'06"E	93.55'
L43	S29°03'24"E	47.04'
L44	S24°35'11"E	63.53'
L45	S63°22'36"W	79.75'
L46	S63°22'36"W	69.76'
L51	N26°37'24"W	226.42'
L52	N68°12'45"W	104.65'
L53	N42°21'17"W	78.81'
L54	N31°44'58"W	137.04
L55	N45°20'00"W	105.89'
L56	S85°46'02"W	57.40'
L57	N75°27'59"W	92.55'
L58	N00°38'00"E	73.60'
L59	N00°58'03"E	251.17'
L60	N00°50'53"E	98.01'

LINE DATA ALONG

SECTION "C"

DISTANCE

BEARING

LINE

	LINE DATA ALONG SECTION "D"											
LINE	BEARING	DISTANCE										
L61	S17°35'36"E	141.46'										
L62	S38°14'33"E	182.94'										
L63	S34°41'46"E	217.90'										
L64	S11°18'34"E	113.15'										
L65	N89°21'48"W	197.37'										
L66	N41°30'48"W	129.50'										
L67	N25°08'41"W	234.94'										
L68	N32*09'04"W	145.52'										
L69	N08°20'51"W	49.53'										
L70	N62°54'56"E	137.85'										
L71	N62°54'56"E	47.95										

CC	METADATA CORNER DESCRIPTIONS FOR DISERVATION EASEMENT
CORNER #	DESCRIPTION
1 THRU (46) & (51) THRU (71)	No. 5 REBAR FLUSH WITH GRADE WITH AN ALUMINUM 3 1/4" CAP INSCRIBED: "STATE OF NORTH CAROLINA CONSERVATION EASEMENT"

GENERAL NOTES:

METADATA CORNER

DESCRIPTIONS FOR PROPERTY LINES & TIE DOWNS

DESCRIPTION

1.5' ABOVE GRADE

0.4' ABOVE GRADE

1.0" O.D. IRON PIPE 1.6' ABOVE GRADE

1.0" O.D. IRON PIPE

0.8' BELOW GRADE

0.2' BELOW GRADE

0.1' ABOVE GRADE

NON-MONUMENTED CORNER

NON-MONUMENTED CORNER

No. 5 REBAR FLUSH WITH GRADE

1.5" O.D. PINCHED TOP IRON

No. 5 REBAR FLUSH WITH GRADE

No. 5 REBAR FLUSH WITH GRADE

CORNER

(103) AND (104)

(112) AND (114)

- 1) NOTE: NO ABSTRACT TITLE, NOR TITLE COMMITMENT, NOR RESULTS OF TITLE SEARCH WERE FURNISHED TO THE SURVEYOR. ALL DOCUMENTS OF RECORD REVIEWED ARE NOTED HEREON (SEE REFERENCES). THERE MAY EXIST OTHER DOCUMENTS OF RECORD THAT MAY AFFECT THIS SURVEYED PARCEL.
- NO HORIZONTAL CONTROL EXISTS WITHIN 2000 FT. ALL DISTANCES ARE GROUND HORIZONTAL DISTANCES AND ALL CROSS-SECTIONS HAVE ASSUMED ELEVATIONS.
- THE FOLLOWING LINE NUMBERS WERE NOT USED: L47 L50 AND L72. THE FOLLOWING CORNER NUMBERS WERE NOT
- ONLY IRON STAKE 110 HAS TRUE NORTH CAROLINA STATE PLANE COORDINATES. ALL OTHER COORDINATES ARE GROUND COORDINATES (NAD 83(2011)).
 - SURVEYOR COULD NOT FIND A DEED REFERENCE FOR THE 30' DUKE ENERGY CAROLINAS EASEMENT. HOWEVER, A DEED WAS RECORDED FOR THE EASEMENT SOUTH OF THIS SECTION OF CONSERVATION EASEMENT AND SURVEYOR HAS HELD THE 30' WIDTH. SEE D.B. 3352, PG. 269 FOR THE DESCRIPTION SOUTH OF THE CONSERVATION EASEMENT.

LAST OF CONSTRUCTION WAS APRIL 3, 2016 AND PLANTING WAS DONE ON APRIL 7, 2016. THIS INFORMATION WAS PROVIDED BY RESTORATION SYSTEMS, LLC.

THE NCSPC SHOWN ON POINT 110 (ISS) WAS OBTAINED FROM AN NGS OPUS SOLUTION. THIS OBSERVATION WAS STARTED ON 06/04/2014 15:26:00 AND ENDED ON 06/04/2014 17:29:00 USING A TOPCON HYPERLITE PLUS GPS UNIT. THE COMBINED FACTOR IS 0.99996471. THE DATUM IS NAD '83(2011). THE FOLLOWING BASE STATIONS WERE USED IN THE

PID	DESIGNATION	LATITUDE (m)	LONGITUDE (m)
DF9213	NCBU BURLINGTON CORS ARP	N360529.586	W0792612.176
DM3527	NCRX ROXBORO CORS ARP	N362328.056	W0785954.418
DJ6107	NCG5 GREENSBORO 5 CORS ARP	N360403.612	W0794441.845
	,		

FEMA FLOOD STATEMENT:

THE AREA REPRESENTED BY THIS PLAT IS LOCATED IN A FLOOD HAZARD BOUNDARY ACCORDING TO FEMA MAP NUMBER(S) 3710884600K, ZONE(S): AE, FLOODWAY & X DATED: JUNE 18, 2007

> SHEET 5A (2 OF 78) AS-BUILT SURVEY

THE STATE OF NORTH CAROLINA. **DIVISION OF** MITIGATION SERVICES DMS PROJECT ID# 96312 SPO FILE # 01-AA NC DMS CONTRACT # 5791 RFP# 16-005568

AYCOCK SPRINGS STREAM AND WETLAND RESTORATION SITE BOONE STATION TOWNSHIP ALAMANCE COUNTY NORTH CAROLINA

300

200 GRAPHIC SCALE 1" = 100

	As-built	As needed
Avg. Water Surface Slope	0.0010	
Riffle Length	54	
Avg. Riffle Slope	0.0019	
Pool Length	43	

Reach Feature Date Crew	Travis Creek (Upst Profile 4/7/16 Perkinson, Keith	ream)									
Station	2016 As-built Survey Bed Elevation	Water Elevation	Station	As needed Bed Elevation	Water Elevation	Station	As needed Bed Elevation	Water Elevation	Station	As needed Bed Elevation	Water Elevation
0.0	594.4	595.0				Otation	Dea Lievation	Water Elevation	Station	Ded Elevation	WHIEL ELEVBER
32.6	594 5	595 1			4						
37.9	593 9	595 1									
46.9	592 8	595.1						- 1			
52.8	594.7	595 1									
90.8	594.2	595.2						- 1			
135 8	594 3	595.1						- 1			
140 3	593.8	595 2						- 1			
150.5	593.2	595 2			1						
157.3	594 5	595.2									
195 2	594 8	595 2									
250.7	595 0	595 3									

Project Name Aycock - As-built (2016) Profile

	As-built	As needed
Avg. Water Surface Slope	0.0009	
Riffle Length	70	
Avg. Riffle Slope	0.0015	
Pool Length	21	

Project Nan	ne Aycock - As-built	(2016) Profile													As-built		As needed		1	
Reach	UT I												Avg. Water Sur	face Slone	0.0189		113 liceacu		1	
Feature	Profile												Riffle Length	-mee olope	18					
Date	4/7/16												Avg. Riffle Slop	e	0.0223				1	
Crew	Perkinson, Keith												Pool Length		10		1 1			
									-											
	2016			2016			2016			2016			2016			2016			2016	
	As-built Survey			As-built S			As-built Si			As-built Su	rvey		As-built Sur	vey	A	s-built Sur	vey		As-built Sur	VEV
Station	Bed Elevation	Water Elevation	StationB	ed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elev.	Water Elev.	Station	Bed Elev.	Water Ele
0.0	588.6	589.5	228. I	591.5	592.3	403.3	594.9	594.9	554.8	596.7	597.5	708.2	598.6	599,5	881.2	603.3	603.9	1050.6	607.2	608.0
27.4	589.1	589.6	234.0	591.5	592.3	411.3	594.9	595.2	560.2	596.8	597.4	710.8	599.4	599.4	886.0	603.0	603,9	1053.0	607.8	608.1
70.0	591.3	591.4	236.1	591.9	592.3	418.8	595.1	595.4	562.5	597.2	507.5	7367	600.0	600.0	000.4			1	607.9	608.3
70.0	271.3	271.7	230.1	371.7	392.3	410.0	J7J. 1	393.4	202.2	397.2	597.5	726.7	233.9	600.0	890.4	602.8				
74.5	590.5	591.3	255.2	592.1	592.5	419.2	595.1	595.4	581.6	597.2 597.3	597.5 597.7	747.9	599.9 600.3		890.4 891.9	602.8 604.2	603.8 604.4	1066.2		
												747.9	600.3	600.5	891.9	604.2	604.4	1069.5	607.8	608.4
74.5	590.5	591.3	255.2	592.1	592,5	419.2	595.1	595.4	581.6	597.3 596.9	597.7 597.7	747.9 750.6	600.3 599.7	600.5 600.5	891.9 909.2	604.2 604.6	604.4 604.9	1069.5 1078.1	607.8 607.2	608.4 608.3
74.5 80.9	590.5 590.3	591.3 591.3	255.2 277.1	592.1 592.6	592.5 592.9	419.2 421.5	595.1 594.7	595.4 595.4	581.6 583.8	597.3	597.7	747.9	600.3	600.5	891.9	604.2	604.4	1069.5	607.8	608.4

	As-built Survey			As-built S			As-built S		l	As-built Su	rvey		As-built Su	rvey	1	As-built Sur	vey [A	As-built Sur	vev 1		As-built Sur	vev
Station		Water Elevation	StationB	ed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elev.	Water Elev.	Station	Bed Elev.	Water Elev.	Station	Bed Elev.	Water Elev
0.0	588.6	589.5	228. I	591.5	592.3	403.3	594.9	594.9	554.8	596.7	597.5	708.2	598.6	599,5	881.2	603.3	603.9	1050.6	607.2	608,0	1210.35	611.8665	612.4932
27.4	589.1		234.0	591.5	592.3	411.3	594.9	595.2	560.2	596.8	597.4	710.8	599.4	599.4	886.0	603.0	603,9	1053.0	607.8	608.1	1212.9	611,5697	612.4771
70.0	591.3	591.4	236.1	591.9	592.3	418.8	595.1	595.4	562,5	597.2	597.5	726,7	599.9	600.0	890.4	602.8	603.8	1066.2	607.9	608.3	1216.01	611,6157	612.4681
74.5	590.5	591.3	255.2	592.1	592.5	419.2	595.1	595.4	581.6	597.3	597.7	747.9	600.3	600.5	891.9	604.2	604.4	1069.5	607.8	608.4	1219.37	612,3984	612.8173
80.9	590.3		277.1	592.6	592.9	421.5	594.7	595.4	583.8	596.9	597.7	750.6	599.7	600.5	909.2	604.6	604.9	1078.1	607.2	608,3	1226.38	612.4988	012.01.0
88.8	590.1	591.3	279.9	592.2	592.9	426.6	594.8	595.4	590.2	596.9	597.7	753.7	599.9	600.5	911.0	604.0	604.9	1079.6	608.6	608.6	1237,61	612.7154	613,0747
92.8	591.0	591.4	284.6	592.0	592.9	429.4	594.9	595.5	593.3	597.6	597.9	755.3	600.5	600.9	915.7	604.2	604.9	1092.3	608.8	609,1	1239,12	612.5301	613.2143
103.4	591.1	591.6	289.0	592.3	592.9	443.8	595.5	595.8	609.1	597.9	598.2	767.9	600.6	601,0	918.2	604.6	605.0	1093.4	608.3	609.1	1242.57	612.3088	613.1226
109.6	591.1	591.7	291.7	592.5	593.0	446.6	595.2	595.8	611.9	597.5	598.1	768.8	600.4	601.1	933.1	605.2	605,5	1096.2	608.2	609.1	1245.26	612.9595	613,2313
111.6	591.0	591.7	307.8	592.8	593.2	451.5	594.9	595.8	615.5	597.4	598.2	771.9	600.5	601.1	935.5	604.2	605.4	1098.7	608.9	609.2	1262.14	613.3293	613.6862
116.4	590.8	591.7	308.0	593.0	593.2	456.3	595.2	595.8	617.2	597.8	598.2	773.9	600.9	601.3	943.1	604.5	605.4	1112.8	609.2	609.7	1263.46	612.7936	613.6363
118.4	591.2	591.7	309.3	592.6	593.2	458.0	595.5	595.9	627.2	598.0	598.3	788.6	601.5	601.8	944.3	605.9	606,0	1116.0	608.7	609.5	1265.82	613	613,621
134.7	591.6	591.8	313.1	592.7	593.2	469.7	595.9	596.1	629.1	597.6	598.3	791.2	601.0	601.6	965.5	606.2	606.6	1121.6	608.4	609,5	1268,08	613.5114	613.6382
150.9	591.8	591.9	314.6	593.3	593.3	471.7	595.2	596.2	632.1	597.5	598.3	793.8	601.5	601.9	966.5	606.3	606.6	1128.0	609.1	609.7	1287.53	613.7245	614.1786
152.5	591.0	591.9	324.3	593.0	593.5	477.2	595.2	596.1	635.7	597.7	598.3	809.2	601.7	602.0	968.7	605.7	606.5	1129.4	610.2	610,4	1303.01	614.2808	614,6202
156.7	591.2	592.0	337.7	593.4	593.8	479.6	595.6	596.1	638.8	598.0	598.5	811.8	601.5	602.0	972.5	605.8	606.6	1141.2	610.2	610,5			
158.5	591.8	592.0	339.7	592.8	593.8	490.0	595.9	596.5	653.4	598.4	598.7	816.7	601.4	602,0	974.9	606.2	606.6	1143.5	609.7	610.4			
169.6	591.7	592.0	346.1	593.0	593.8	502.0	596.3	596.6	653.8	598.5	598.7	818.7	601.8	602.2	990.9	606.7	607.0	1147.9	609.8	610.5			
170.6	591.3	592.0	348.6	593.4	593.8	504.2	595.9	596.6	657.0	598.1	598.7	839.2	602.0	602.6	993.2	606.2	607.0	1149.7	610.5	610.8			
174.4	591.2	592.0	364.1	593.9	594.3	508.2	595.9	596.6	662.8	598.1	598.7	840,5	601.9	602.7	1000.6	606.1	607.1	1158.7	610.9	611.0			
175.6	591.6	592.1	366.2	593.7	594.3	511.5	596.6	596.8	668.4	598.2	598.7	843.4	601.9	602.6	1003.2	606.9	607.2	1161.6	609.9	610.9			
196.0	591.5	592.1	373.7	593.6	594.3	529.3	596.8	597.0	674.9	598.6	599.0	846.4	602.3	602.9	1024.6	607.0	607.7	1164.64	611,3515	611.537			
198.9	591.2	592.0	378.2	593.6	594.2	531.1	596.4	596.9	687.1	598.7	599.1	858.4	602.8	603.4	1026.7	606.9	607.6	1182.7	611,4489	611.8942			
207.3	591.4		380.6	594.0	594.3	535.5	596.3	597.0	689.4	598.4	599.1	860.5	602.2	603.5	1030.7	606.9	607.6	1185.48	610.9971	611.7508			
210.5	591.6		394.2	594.2	594.5	537.0	597.1	597.2	695.5	598.5	599.1	864.5	602.6	603.4	1033.2	607.3	607.8	1189.57	611.1215	611.6905			
222.1	591.9	592.3	395.9	593.8	594.5	547.8	597.1	597.4	697.5	598.8	599.1	867.2	603.1	603.4	1045.8	607.7	608.1	1192.15	611,4037	611.8504			
224.0	591.5	592,3	401.5	593,8	594.6	549.8	596.7	597.5	706.5	598.9	599.5	879.3	603.6	603.9	1047.1	607.2	608.2	1201.09	611,8506	612.1237			

 Project Name
 Aycock - As-built (2016) Profile

 Reach
 UT 2

 Feature
 Profile

 Date
 4/7/16

 Crew
 Perkinson, Keith

Elevation (feet - arbitrary)

CIEW	r cikingon, recim										
	2016 As-built Survey			2016 As-built Survey			2016			2016	
Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	As-built Survey Bed Elevation	Water Elevation	Station	As-built Survey Bed Elevation	Water Elevation
0.0	592.1	592.6	152.4	594.5	595.4	315.3	600,5	601.3	469.7		
13.7	592.6	592.9	153.8	595.1	595.4	317.8	601.1			605.6	606.4
15.6	591.9	592.9	167.9	595.7	595.8	329.2	601.1	601.5	477.0	605.7	606.6
20.5	591.9	592.9	169.2	595.0	595.7	329.2	600.9	601.7	478.3	606.7	606.8
25.6	592.0	592.9	172.2	594.8	595.8	338.0		601.7	494.7	607.1	607.5
28.5	592.5	592.8	176.4	595.0	595.9	340.0	601.1	601.7	496.1	606.5	607.4
43.5	592.7	593.3	178.1	596.4	596.5	355.7	601.8	602.3	500.6	606.6	607.4
44.6	592.6	593.3	192,9	596.7	597.0		602.1	602.6	503.3	607.1	607.6
50.3	592.3	593.3	206.9	597,5	597.6	358.8	601.5	602.6	516.8	607.5	607.9
55.3	592.5	593.3	217.0	597.8		363.0	601.8	602.9	518.7	607.1	607.9
56.8	592.8	593.4	219.2		598.0	364.0	603.3	603.2	522.9	607.1	608.0
71.7	593.7	593.7	219.2	597.1	598.0	376.9	603.5	603.8	524.7	607.9	608.3
74.3		593.7		597.2	598.0	380.4	603.1	603.8	536.2	608.6	
	593.1		226.8	597.1	597.9	383.7	603.2	603.9	548.0	608.7	609,1
81.1	593.0	593.7	230.0	598.1	598.2	386.0	604.0	604.2	549.2	608.3	609.1
86.6	593.2	593.7	239.0	598.3	598.7	396.4	604.0	604.4	554.4	608.5	609.1
88.7	593.5	593.8	240.2	597.8	598.7	398.6	603.9	604,4	556.5	609.1	
103.2	594.1	594.1	247.6	597.6	598.9	405.2	603.5	604.4	574.0	609.7	
112.0 .	594.2	594.5	249.3	599.1	599.2	407.6	604,2	604.5	575.5	609.3	610.0
113,2	593.8	594.5	258.4	599.1	599.5	419.0	604.6	604.9	579.8	609.3	610.0
116.2	593.7	594.5	259.4	598.5	599.5	421.2	604.2	605,0	582.2	609.9	
117.2	594.3	594.7	266.1	598.7	599.5	424.1	604.2	605.0	600.4	610.5	
126.9	594.4	594.9	268.2	599.3	599.6	427.6	604.2	605.0	603.2	609.9	610.7
129.3	594.0	594.9	281.3	599.6	600.2	433.4	604.7	605.1	609.8	610.1	610.7
132.2	594.1	594.9	283.8	599.6	600.2	449.5	605,3	605.7	612.2	610.5	
135.9	593.9	594.9	291.2	599.6	600.2	451.5	605.1	605.7	632.5	611.5	611.7
137.4	594.5	595.0	292.5	600.7	600.8	455.9	605.4	605.7			
148.2	595.0	595.4	307.0	601.1	601.3	458.5	605.8	606.1			
149.2	594.6	595.4	309.1	600.4	601.2	468.8	606.1	606.4			

	As-built		As needed	
Avg. Water Surface Slope	0.0301			
Riffle Length	14			
Avg. Riffle Slope	0.0288			l i
Pool Length	10			

Distance (feet) ---Bed As-built 4/7/2016 ----Water Surface As-built 4/7/16 SHEET 5A (12 OF 78)

Aycock (UT 2) As-built Profile 2016

Project Name Reach Feature Date Crew	Aycock - As-built (2 UT 3 Profile 4/7/16 Perkinson, Keith	016) Profile						4			12 N 18 1
Station	2016 As-built Survey Bed Elevation	Water Elevation	Station	2016 As-built Survey Bed Elevation	Water Elevation	Station	As needed Bed Elevation	Water Elevation	Station	As needed Bed Elevation	Water Elevation
0.0	595.6		157 6	597.3	597.5					Ded Elevation	THE ELEVATION
11.4	595.8		159.4	596 9	597.5			1			
23.5	596.1	i	162 4	597 0	597.5			- 1			
25.7	595.6	596.3	164 3	597.5	1			1			
31.7	595.5	596.3	177.9	597 4				1			
33.7	596.3	596.3	180 4	596 8	597.8						
47.1	596.2	596.5	184 8	596 8	597.7						
48.7	595.7	596.5	1867	597 4	597.8						
51.6	595.6	596.5	195 0	597 7				1			
54.7	596.2	596.6									
63.4	596.1	596.6						1			
71.2	596.4	596,6						1			
74.3	595.8	596.6									
77.3	595.8	596.6									
78.8	596.8	i									
88.4	596.4										
96.6	596.7	1									
98.1	595.9	596.8									
101.5	596.0	596.8						1			
102.9	596.5										
114.3	596.7										
115.9	596.2	596.9						- 1			
119.1	596.2	596.9						- 1			
120.9	596.7	596.9						- 1			
132.4	597.0	597.1			0			- 1			
134.4	596.2	597.1						- 1			
139.0	596.3	597.2									
142.0	596.8	597.1									

	As-built	As needed		
Avg. Water Surface Slope	0.0092			
Riffle Length	15			
Avg. Riffle Stope	0.0162			
Pool Length	8	1 1		

Project Name Reach Feature Date Crew	Aycock - As-built UT 4 Profile 4/7/16 Perkinson, Keith	(2016) Profile									
Station	2016 As-built Survey Bed Elevation	y Water Elevation	Station	2016 As-built Surve Bed Elevation		Etation.	2016 As-built Surve		g:	As needed	
0.0	595.3	596.1	222.5	599.7	Water Elevation 600.3	Station 387 4	Bed Elevation 600.8	Water Elevation	Station	Bed Elevation	Water Elevation
26.7	597.4	597.7	224.9	600.3	600.4	392.5	601.3	601.6			
54.6	598.8	599.3	245.7	600.3	600.5	404.9	601.4	6019			
61.6	599.0	599.4	254.2	599.9	600.5	404.9	001 4	001.9			
81.3	598.4	599.4	25B.2	600,0	600.5			1			
86.8	599.0	599.4	260.8	600.4	600.5			- 1			
102.9	599.1	599.5	277.0	600.4	600,7						
121.5	598.3	599.5	279.4	599.9	600,7						
144.7	599.3	599.6	288.9	599.2	600.7						
148.0	598.8	599.6	293.6	599,4	600,7						
160.9	599.0	599.6	295.6	600.7	600.9			1			
167.0	599.5	599.6	314.4	600.9	601,2						
182.1	599.5	599.7	319.4	599.5	601.2			- 1			
184.3	598.8	599.7	325.6	599.5	601.2			- 1			
196.6	598.7	599.7	332.0	599.5	601.2			- 1			
198.1	600.1	600.1	335.9	600.9	601.2			1			
211.4	600.1	600.4	370.8	600.9	601.5			1			
215.3	599.6	600.4	373.9	600.9	601.5			1			

	As-built	As needed
Avg. Water Surface Slope	0 0066	
Riffle Length	19	
Avg. Riffle Slope	0.0128	
Pool Length	22	1 1 1

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 1, Riffle
Feature	Riffle
Date:	4/6/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.0	595.01
4.3	594.97
6.5	594.99
8.3	594.93
10.0	594.19
11.0	593.83
12.6	593.14
13.2	592.60
14.0	592.50
15.0	592.45
16.4	592.25
18.2	592.22
21.2	592.13
22.7	592.28
25.0	592.35
27.2	592.09
29.8	591.94
30.8	592.11
31.5	592.80
32,2	593.12
33.1	593.6
35.0	593.9
36.0	594.2
39.2	594.5
42.3	594.8
44.2	595.1
46.1	595.4

SUMMARY DATA	
Bankfull Elevation:	594.2
Bankfull Cross-Sectional Area:	41.3
Bankfull Width:	26.0
Flood Prone Area Elevation:	596.5
Flood Prone Width:	150.0
Max Depth at Bankfull:	2.3
Mean Depth at Bankfull:	1.6
W / D Ratio:	16.4
Entrenchment Ratio:	5.8
Bank Height Ratio:	1.0

Stream '	Туре	C/E	_

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	Travis Creek, XS - 2, Riffle	
Feature	Riffle	
Date:	4/6/2016	
Field Crew:	Perkinson, Keith	

Station	Elevation
0.0	595.01
1.6	595.22
2.8	595.02
3.8	594.41
4.7	594.09
5.8	593.66
6.6	593.14
7.2	592.89
7.8	592.62
9.2	592.51
10.5	592.47
11.5	592.57
12.9	592.53
15.2	592.56
16.5	592.70
17.9	592.79
19.7	592.52
20.6	592.49
21.5	592.56
22.6	592.50
23.3	593.1
23.9	593.5
24.8	593.8
26.1	594.4
27.2	594.9
28.7	595.2
30.2	595.3

Bankfull Elevation:	595.0
Bankfull Cross-Sectional Area:	47.5
Bankfull Width:	25.2
Flood Prone Area Elevation:	597.5
Flood Prone Width:	150.0
Max Depth at Bankfull:	2.5
Mean Depth at Bankfull:	1.9
W / D Ratio:	13.4
Entrenchment Ratio:	6.0
Bank Height Ratio:	1.0

Stream Type	C/E
The second secon	

SHEET 5A (17 OF 78)

SHEET 5A (18 OF 78)

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	Travis Creek, XS - 5, Pool
Feature	Riffle
Date:	4/6/2016
Field Crew:	Perkinson, Keith

0.0	595.3
1.9	595,3
2.9	595.3
4.3	595.4
5.5	595,0
7.6	594.4
9.4	593.7
10.3	593.0
11.2	592.6
12.2	592.1
13.7	591.7
14,9	591.9
15.9	591.7
17.3	591.3
18.4	591.6
19.8	591.9
21.6	592.1
23.0	592.4
24.7	592.7
26.0	593.2
27.6	593.9
28.8	594.4
30.0	595.0
30.8	595.5
31.7	595.5
32.5	595.5

Station Elevation

SUMMARY DATA	
Bankfull Elevation:	595.3
Bankfull Cross-Sectional Area:	61.4
Bankfull Width:	26.0
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	4.0
Mean Depth at Bankfull:	2.4
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Stream Type	C/E

SEAL L-4194 DEVENO OF ESSION 17

SHEET 5A (19 OF 78)

SHEET 5A (20 OF 78)

SHEET 5A 22 OF 78)

SHEET 5A (23 OF 78)

593.5

594.4

595.4

596.3

597.0

597.3

597.6

597.8

598.0

598.1

38.9

40.7

42.6

44.9

45.6

47.2

49.4

51.4

ream	Туре	C/E

SHEET 5A (24 OF 78)

SHEET 5A (25 OF 78)

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	Travis Creek, XS - 12, Riffle	
Feature	Riffle	
Date:	4/6/2016	
Field Crew:	Perkinson, Keith	

Station	Elevation
0.0	598.52
2.2	598.51
3.8	598.55
6.5	597.85
9.1	597.20
11.3	596.35
13.2	595.11
14.2	594.79
16.0	594.41
19.2	594.40
20.9	594.42
23.7	594.39
25.9	594.59
27.9	594.83
27.9	594.84
29.3	594.95
30.5	595.30
31.6	595.62
32.8	596.33
34.2	597.02
35.6	597.5
36.4	598.2
37.4	598.5
38.4	598.6
39.7	598.5

Bankfull Elevation:	597.8
Bankfull Cross-Sectional Area:	68.7
Bankfull Width:	29.0
Flood Prone Area Elevation:	601.2
Flood Prone Width:	150.0
Max Depth at Bankfull:	3.4
Mean Depth at Bankfull:	2.4
W / D Ratio:	12.2
Entrenchment Ratio:	5.2
Bank Height Ratio:	1.0

Stream Type	C/E

SEAL L-4194 JANOSURVE O

SHEET 5A (26 OF 78)

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	Travis Creek, XS - 13, Pool	
Feature	Pool	
Date;	4/6/2016	
Field Crew:	Perkinson, Keith	

Station	Elevation
0.0	597.6
2.0	597.5
3.4	596.8
4.7	596.5
5.8	596.3
7.5	595.4
8.3	595.4
9.3	594.0
10.7	593.8
12.6	593.7
13.7	593.6
15.5	593.6
17.5	593.7
18.8	593.9
20.2	594.1
21.2	594.4
22.3	595.0
23.4	595.5
26.2	596.7
28.6	597.4
30.5	598.1
32.5	598.6
34.6	598.9

Bankfull Elevation:	597.5
Bankfull Cross-Sectional Area:	64.0
Bankfull Width:	26.9
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	3.9
Mean Depth at Bankfull:	2.4
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Stream Type C/E

SHEET 5A (27 OF 78)

SHEET 5A (28 OF 78)

SHEET 5A (29 OF 78)

SHEET 5A (30 OF 78)

SHEET 5A (31 OF 78)

SHEET 5A (32 OF 78)

SHEET 5A (33 OF 78)

SHEET 5A (34 OF 78)

SHEET 5A (35 OF 78)

Stream Type C/E

SHEET 5A (36 OF 78)

SHEET 5A (37 OF 78)

SHEET 5A (38 OF 78)

SHEET 5A (39 OF 78)

SHEET 5A (42 OF 78)

SHEET 5A (43 OF 78)

SHEET 5A (45 OF 78)

SHEET 5A (48 OF 78)

SHEET 5A (49 OF 78)

SHEET 5A (50 OF 78)

SHEET 5A (52 OF 78)

SHEET 5A (53 OF 78)

SHEET 5A (54 OF 78)

SHEET 5A (55 OF 78)

SHEET 5A (57 OF 78)

SHEET 5A (58 OF 78)

SHEET 5A (60 OF 78)

SHEET 5A (61 OF 78)

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 2, XS - 10, Pool	
Feature	Pool	
Date:	4/6/2016	
Field Crew:	Perkinson, Keith	

Station	Elevation
0.0	605.6
2.1	605.5
3.5	605.0
4.3	604.8
5.3	604.4
6.0	604.2
6.9	604.3
7.4	604.3
8.0	604.9
8.8	605.1
9.8	605.6
10.9	605.9
11.7	606.0

SUMMARY DATA	
Bankfuil Elevation:	605.5
Bankfuii Cross-Sectionai Area:	5.2
Bankfuli Width:	7.5
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfuil:	1.3
Mean Depth at Bankfuii:	0.7
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

ream Type	C/E

SHEET 5A (62 OF 78)

Site	Aycock Springs
Watershed:	Cape Fear, 0303002
XS ID	UT 2, XS - 11, Pool
Feature	Pool
Date:	4/6/2016
Field Crew:	Perkinson, Keith

NII -	
Station	Eievation
0,0	606.3
1.6	606,3
2.8	606.0
3.7	605.4
4.3	605.2
5.5	605.2
6.5	605.2
7.1	605.4
7.9	605.8
8.7	606.1
10.6	606.4

Bankfull Elevation:	606.1
Bankfuli Cross-Sectional Area:	3.5
Bankfuil Width:	6.2
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	0.8
Mean Depth at Bankfuil:	0.6
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Stream Type	C/E

SHEET 5A (63 OF 78)

SHEET 5A (64 OF 78)

SHEET 5A (65 OF 78)

SHEET 5A (66 OF 78)

SHEET 5A (67 OF 78)

Site	Aycock Springs	
Watershed:	Cape Fear, 0303002	
XS ID	UT 3, XS - 3, Pool	
Feature	Riffle	
Date:	4/6/2016	
Field Crew:	Perkinson, Keith	

Station	Elevation
0.0	596.9
1.6	596.8
2.4	596.7
3.1	596.3
3.7	595.9
4.6	595.8
5.4	595.7
6.3	595.7
6.7	595.9
7.4	596.7
8.6	597.4
10.2	598.1
11.0	598.4
12.3	598.5

Bankfull Elevation:	596.7
Bankfull Cross-Sectional Area:	3.6
Bankfull Width:	5.0
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA.
Max Depth at Bankfull:	1.0
Mean Depth at Bankfull:	0.7
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Stream Type	C/E
-------------	-----

SHEET 5A (68 OF 78)

SHEET 5A (69 OF 78)

SHEET 5A (70 OF 78)

SHEET 5A (71 OF 78)

SHEET 5A (72 OF 78)

SHEET 5A (73 OF 78)

SHEET 5A (75 OF 78)

SHEET 5A (76 OF 78)

SHEET 5A (77 OF 78)

SHEET 5A (78 OF 78)

Appendix E. FEMA Coordination – LOMR

LOMR TRAVIS CREEK ALAMANCE COUNTY

FOR RESTORATION SYSTEMS, LLC

July 1, 2016

SUNGATE DESIGN GROUP, PA

915 Jones Franklin Road Raleigh, N. C. 27606

LOMR for Travis Creek

Restoration Systems, LLC Aycock Springs Stream Restoration

Table of Contents

SECTION 1	REPORT
-----------	--------

REPORT

COMPARISON SPREADSHEETS

SITE PHOTOS

AS-BUILT CERTIFICATION STRUCTURE CERTIFICATION

SECTION 2 MT – 2 FEMA FORMS

SECTION 3 CONSTRUCTION PLANS

SECTION 4 EFFECTIVE MODEL, FIRM & FIS INFORMATION

EFFECTIVE MODEL EFFECTIVE FIRM FIS REPORT

SECTION 5 PROJECT MODEL OUTPUT TABLES

HEC-2 REPORT TABLES

DUPLICATE EFFECTIVE

HEC-RAS V. 4.1 REPORT TABLES

DUPLICATE EFFECTIVE

DUPLICATE EFFECTIVE - TRUNCATED

CORRECTED EFFECTIVE EXISTING CONDITIONS

REVISED

SECTION 6 CROSS SECTIONS

AS-BUILT CROSS SECTIONS

AS-BUILT VS PROPOSED CROSS SECTIONS

SECTION 7 MAPPING

WORK MAP – 500 SCALE

PROPOSED FIRM FIS REVISIONS

SECTION 8 PROPERTY OWNER NOTIFICATION

PON LETTER

PROPERTY OWNERS

PON MAP

Travis Creek – Stream Restoration Alamance County, North Carolina

Prepared by: Sungate Design Group, PA

915 Jones Franklin Road Raleigh, N. C. 27606

For: Restoration Systems, LLC

Date: July 1, 2016

LOMR FOR TRAVIS CREEK - STREAM RESTORATION

INTRODUCTION

Restoration Systems, LLC has completed construction of a stream restoration, consisting of a 134 linear foot section and a 758 linear foot using channel geometry that has been derived from studying a healthy local reference reach and applying it to site conditions on Travis Creek. The restoration was proposed to stabilize bends and control velocity. The channel geometry and stream alignment have been optimized to promote healthy and sustainable geomorphology. In areas where channel realignment was required, the existing channel has been backfilled to the elevation of the floodplain. The abandoned road bed that crossed the floodplain has been removed to eliminate the obstruction it created in high flow events. The stream design was prepared by Axiom Environmental, Inc., Raleigh, North Carolina, and the plans were prepared by Sungate Design Group, PA, Raleigh, North Carolina.

The two sections of stream restoration extend from station 22378 to station 22709 and from station 21828 to station 20767. The project area is bounded by RS 23245 upstream and RS 19430 downstream. All surveys were performed in NAVD 88, and the vertical datum for the model is NGVD 29. All survey data was converted to the NGVD 29 datum before being input into the model. The datum correction for Alamance County is -0.80'.

On 10/30/14, Sungate Design Group (SDG) sent an e-mail to NC Floodplain Mapping (NCFMP) requesting the Effective model for Travis Creek in Alamance County. NCFMP responded by e-mail with the HEC 2 files attached. Sungate saved the attached HEC 2 files onto the SDG Server and used the files to create the model used for the Travis Creek No Rise Certification.

On 6/15/15 A No-Rise Certification study for the project was prepared and submitted to Alamance County that assessed the impacts to the 100-year flood elevation caused by the proposed restoration on Travis Creek. The No-Rise Certification was approved by Alamance County on 9/4/15.

DUPLICATE EFFECTIVE MODEL

The model received from NCFMP was used to create the Duplicate Effective model. HEC-2 Version 4.6.2 May 1991 was used to create the model. The 100-year water surface elevations in the Duplicate Effective model match the Effective model within a reasonable tolerance (+/- 0.1 ft). Floodway widths match exactly.

It was decided to import the HEC-2 model into HEC-RAS Version 4.1.0. After revising the distance from the upstream cross section to the bridge face from 0.0' to 0.5' on the one bridge in the model located at RS 23180.5, the model ran successfully. The 100-year elevations matched within a reasonable tolerance (+/- 0.5') at all sections except for RS 5867, RS 5930, RS 23160, and RS 23201, where variations as much as 1.6' were observed. Additionally, negative surcharges and surcharges greater than 1.0 were observed in these areas. The discrepancies in water surface elevation and the associated surcharges are likely the result of different computational methodologies used by the different models. The model was run in HEC-RAS Version 3.1.3, but very similar water surface elevations and surcharges were observed as in Version 4.1.0. Based on this information, the Duplicate Effective model Version 4.1.0 will be used and adjustments will be made in the Corrected Effective model. It was decided to truncate the model below RS 16030.

CORRECTED EFFECTIVE MODEL

The imported and truncated Duplicate Effective model was used to create the Corrected Effective model. Contraction and expansion coefficients were revised from 0.2 and 0.4, respectively, to 0.1 and 0.3, respectively, at all cross sections except for Sections 2,3, and 4 of the bridge routine, which were revised to 0.3 and 0.5, respectively. The elevations of the ineffective flow limits at RS 23160 were reduced because the structure just upstream at RS 23180.5 overtops in the 100-year event. This eliminated the surcharge greater than 1.0 at RS 23160 and the negative surcharge above the structure at RS 23201. This change resulted in surcharges greater than 1.0 at three sections above the structure. Method 4 was used to set the encroachment stations from RS 23245 to RS 23110, and Method 1 was used to finalize the encroachment station. After minor adjustments to the floodway in this area, no negative surcharges or surcharges greater than 1.0 were present.

EXISTING CONDITIONS MODEL

The Corrected Effective model was used to create the Existing Conditions model. A section was added at RS 22110 to better reflect the hydraulic transition between the two proposed sections of stream restoration. Floodway stations were estimated using method 4 and finalized using method 1. Sections located in the project area (RS 23110 to RS 20970) were revised based on a field survey conducted by K2 Design Group, PA and supplemented by NCFMP bare earth topographic data. Downstream reach lengths were adjusted to represent the existing conditions. It was decided to measure the downstream

reach length of RS 20970 along the general path of the floodplain instead of the existing channel alignment to reflect the condition that the vast majority of flow in the 100-year event will short-circuit the sharp bend in the existing channel just downstream of RS 20970. Since the Effective model was in HEC-2, no GIS cut lines were input. No changes to roughness coefficients or discharge were made.

PROPOSED MODEL

The Existing Conditions model was used to create the Proposed model. To reflect the upstream section of stream restoration, the channel geometry of RS 22440 was revised. The channel geometry of RS 21750, 21270, 021250, 21085, 21075, and 21030 was revised to reflect the downstream section of stream restoration. Reach lengths were adjusted to reflect the change in alignment of the new stream. It was decided that the vast majority of flow in the 100-year event would short-circuit the sharp bend in the proposed stream alignment downstream of RS 20970 due to the significant depth of flood waters of almost 12' versus the relatively shallow channel of 2.7' and the very wide proposed floodplain in this area. To reflect this condition, it was decided to measure the downstream reach length of RS 20970 along the general path of the floodplain instead of the proposed channel alignment. No changes to roughness coefficients or discharge were made.

AS-BUILT

The Proposed Truncated Models were saved as As-built Floodway and As-built Multiple. The as-built survey was compared to the information in the Proposed Model and it was found that the as-built stream cross sections were generally slightly wider and deeper than those shown on the approved CLOMR. The new channel geometry was input into the Hec-Ras model v4.1.0 for the As-built analysis.

RESULTS

As a result of the constructed stream restoration on Travis Creek, there are decreases in the 1% annual chance water surface elevation with the maximum decrease of 0.07 foot occurring of at River Station 22970, when comparing the As-built with the Proposed. There are no increases in the 1% annual chance water surface elevation. When comparing the As-built with the Effective, there are decreases all along the reach with the maximum decrease being 5.68 feet at River Station 23110. The apparent cause for this decrease is the 8.3 foot difference in the stream bed elevation between the effective model and the field survey elevations in this area of the stream. Due to the realignment of the channel in some areas of the project, the floodway width on both sides of the channel in these areas has been adjusted slightly. However, the total floodway width did not change at any cross section between the Existing Conditions and As-built models, and the floodway

stations remained the same throughout the project between the Existing Conditions and As-built models.

The Hec-Ras models and the following Tables are in NGVD 29 and the Construction Plans included with the LOMR package are in NAVD 88.

Travis Branch S	tream Restoration							7/15/2016
HEC DAC S:	an First Durad St	an Develo	Short Duc and Di	au Duafila di	20 V.			
	er: First Broad Riv			er Profile: 10		F	Facus	Dun's at large at
River Sta	Plan	W.S. Elev 100 yr.	W.S. Elev 100 yr w/FW	Delta WS	Top Width Act	Encro. Sta LT	Encro. Sta RT	Project Impact 100-yr Elevation AsBuilt - Revised
		(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)
		. , ,	. ,	. ,	` ,	. ,	· •	. ,
27950	Prop FW Trunc	619.6	620.1	0.5	70	1330	1400	(
27950	Prop FW AS BUIL	619.6	620.1	0.5	70	1330	1400	
	Prop FW Trunc	619.05	619.53	0.48	100	1327	1427	
27770	Prop FW AS BUIL	619.05	619.53	0.48	100	1327	1427	
20040	Dana FM Taura	C17.47	C10.03	0.50	200	1520	1720	,
	Prop FW Trunc Prop FW AS BUIL	617.47 617.47	618.03 618.03	0.56 0.56	200 200	1530 1530	1730 1730	(
20840	PTOP PW A3 BOIL	017.47	018.03	0.30	200	1330	1730	
26070	Prop FW Trunc	617.03	617.61	0.58	250	1600	1850	(
	Prop FW AS BUIL	617.03	617.61	0.58	250	1600	1850	
25340	Prop FW Trunc	616.82	617.25	0.43	200	1745	1945	(
25340	Prop FW AS BUIL	616.82	617.25	0.43	200	1745	1945	
	Prop FW Trunc	615.99	616.08	0.09	180	1610	1790	(
23335	Prop FW AS BUIL	615.99	616.08	0.09	180	1610	1790	
		21-21	645.05	2.22				
	Prop FW Trunc	615.94	615.97	0.03	120	1635	1755	(
23245	Prop FW AS BUIL	615.94	615.97	0.03	120	1635	1755	
22201	Prop FW Trunc	615.92	615.96	0.04	143	1617	1760	(
	Prop FW AS BUIL	615.92	615.96	0.04	143	1617	1760	(
23201	TTOPT W AS BOIL	013.32	013.50	0.04	143	1017	1700	
23180.5 BR U	Prop FW Trunc	615.92	615.96	0.04	128.17	1617	1760	
23180.5 BR U	Prop FW AS BUIL	615.92	615.96	0.04	128.17	1617	1760	
	·							
23180.5 BR D	Prop FW Trunc	615.79	615.8	0.01	115.41	1617	1760	
23180.5 BR D	Prop FW AS BUIL	615.79	615.8	0.01	115.41	1617	1760	
	Prop FW Trunc	610.21	610.21	0	143	1617	1760	(
23160	Prop FW AS BUIL	610.21	610.21	0	143	1617	1760	
22110	D 514/ T	505.45	505.04	0.75	1.12	1610	1760	0.00
	Prop FW Trunc Prop FW AS BUIL	606.15	606.91	0.75 0.73	142 142	1618	1760 1760	-0.06
23110	Prop FW AS BUIL	606.09	606.82	0.73	142	1618	1760	
22970	Prop FW Trunc	605.84	606.47	0.63	160	1585	1745	-0.07
	Prop FW AS BUIL	605.77	606.37	0.6	160	1585	1745	0.07
			000101					
22440	Prop FW Trunc	605.55	606.21	0.66	145	1573	1718	-0.06
	Prop FW AS BUIL	605.49	606.13	0.64	145	1573	1718	
	Prop FW Trunc	605.26	605.9	0.64	160	1536	1696	-0.04
22110	Prop FW AS BUIL	605.22	605.84	0.62	160	1536	1696	
	Prop FW Trunc	605.04	605.62	0.58	160	1629	1789	-0.02
21750	Prop FW AS BUIL	605.02	605.58	0.57	160	1629	1789	
242=2	Due a FVA/ T	CO. 1. 0. 1	605.45	0.50	450	4400	4000	
	Prop FW Trunc	604.94	605.45	0.52	150	1189	1339	-0.02
212/0	Prop FW AS BUIL	604.92	605.43	0.51	150	1189	1339	

21250	Prop FW Trunc	604.93	605.45	0.51	160	1159	1319	-0.01
	Prop FW AS BUIL	604.92	605.43	0.51	160	1159	1319	0.01
		001.52	0001.10	0.01	100	1100	1010	
21085	Prop FW Trunc	604.91	605.4	0.5	190	1290	1480	-0.02
	Prop FW AS BUIL	604.89	605.38	0.49	190	1290	1480	
	Prop FW Trunc	604.9	605.41	0.5	225	1329	1554	-0.01
21075	Prop FW AS BUIL	604.89	605.39	0.5	225	1329	1554	
	Prop FW Trunc	604.9	605.4	0.5	235	1352	1587	-0.02
21030	Prop FW AS BUIL	604.88	605.38	0.49	235	1352	1587	
20070	D FM/T	604.00	605.27	0.40	260	2005	2265	0.04
	Prop FW Trunc Prop FW AS BUIL	604.88	605.37	0.49	260 260	2005	2265	-0.01
20970	Prop FW AS BUIL	604.87	605.36	0.49	260	2005	2265	
20230	Prop FW Trunc	604.48	604.89	0.41	170	2050	2220	(
	Prop FW AS BUIL	604.48	604.89	0.41	170	2050	2220	
20230	1100111111012	004.40	004.03	0.41	170	2030	2220	
19430	Prop FW Trunc	602.84	603.56	0.71	180	2030	2210	(
	Prop FW AS BUIL	602.84	603.56	0.71	180	2030	2210	
17790	Prop FW Trunc	600.76	601.37	0.61	150	1265	1415	(
	Prop FW AS BUIL	600.76	601.37	0.61	150	1265	1415	
	Prop FW Trunc	596.47	596.99	0.52	116	1379	1495	(
16030	Prop FW AS BUIL	596.47	596.99	0.52	116	1379	1495	
	Prop FW Trunc	596.07	596.69	0.62	210	1345	1555	
15580	Prop FW AS BUIL	596.07	596.69	0.62	210	1345	1555	

Travis Branch S	tream Restoration							7/15/2016
				- •				
	er: First Broad Riv							
River Sta	Plan	W.S. Elev 100 yr.	W.S. Elev 100 yr w/FW	Prof Delta WS	Top Width Act	Encro. Sta LT	Encro. Sta RT	Project Impact 100-yr Elevation Revised-Effective
		(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)
27950	Effective HEC2	619.57	620.12	0.55	70	1330	1400	0.03
27950	Prop FW AS BUIL	619.6	620.1	0.5	70	1330	1400	
	Effective HEC2	618.95	619.52	0.57	100	1327	1427	0.:
27770	Prop FW AS BUIL	619.05	619.53	0.48	100	1327	1427	
26040	E((): UE02	647.07	647.00	0.70	200	4520	1720	
	Effective HEC2	617.27	617.99	0.72 0.56	200	1530	1730	0.2
26840	Prop FW AS BUIL	617.47	618.03	0.56	200	1530	1730	
26070	Effective HEC2	616.8	617.57	0.77	250	1600	1850	0.23
	Prop FW AS BUIL	617.03	617.61	0.77	250	1600	1850	0.2.
20070		017.03	017.01	0.50	230	1000	1030	
25340	Effective HEC2	616.58	617.21	0.63	200	1745	1945	0.24
25340	Prop FW AS BUIL	616.82	617.25	0.43	200	1745	1945	
23335	Effective HEC2	615.77	616.05	0.28	180	1610	1790	0.22
23335	Prop FW AS BUIL	615.99	616.08	0.09	180	1610	1790	
	Effective HEC2	615.65	615.94	0.29	120	1635	1755	0.29
23245	Prop FW AS BUIL	615.94	615.97	0.03	120	1635	1755	
22201	Effective UEC2	C1 A AA	C14.02	0.40	20	1670	1707	1.40
	Effective HEC2 Prop FW AS BUIL	614.44 615.92	614.82 615.96	0.48	28 143	1679 1617	1707 1760	1.48
23201	PTOP FW AS BOIL	015.92	015.90	0.04	145	1017	1700	
23180.5 BR U	Effective HEC2							
23180.5 BR U	Prop FW AS BUIL	615.92	615.96	0.04	128.17	1617	1760	
	·							
23180.5 BR D	Effective HEC2							
23180.5 BR D	Prop FW AS BUIL	615.79	615.8	0.01	115.41	1617	1760	
	Effective HEC2	612.06	612.42	0.36	28	1679	1707	-1.85
23160	Prop FW AS BUIL	610.21	610.21	0	143	1617	1760	
	Effective HEC2	611.77	612.26	0.49	60	1665	1725	-5.68
23110	Prop FW AS BUIL	606.09	606.82	0.73	142	1618	1760	
22970	Effective HEC2	611.22	611.68	0.46	120	1645	1765	-5.45
	Prop FW AS BUIL	605.77	606.37	0.6	160	1585	1745	3.43
22370	11001111715 5012	003.77	000.57	0.0	100	1303	1, 13	
22440	Effective HEC2	608.46	609.19	0.73	140	1602	1742	-2.97
	Prop FW AS BUIL	605.49	606.13	0.64	145	1573	1718	
	-							
22110	Prop FW AS BUIL	605.22	605.84	0.62	160	1536	1696	
	Effective HEC2	606.45	607.27	0.82	160	1595	1755	-1.43
21750	Prop FW AS BUIL	605.02	605.58	0.57	160	1629	1789	
2.25-	Eff1: 11=00		207.07	~ = -				
	Effective HEC2	605.45	605.98	0.53	150	1210	1360	-0.53
21270	Prop FW AS BUIL	604.92	605.43	0.51	150	1189	1339	
24250	Effective HEC2	605.44	606	0.56	160	1200	1360	-0.52

21250	Prop FW AS BUIL	604.92	605.43	0.51	160	1159	1319	
	- 1-							
21085	Effective HEC2	605.31	605.89	0.58	190	1160	1350	-0.42
21085	Prop FW AS BUIL	604.89	605.38	0.49	190	1290	1480	
21075	Effective HEC2	605.31	605.86	0.55	225	1200	1425	-0.42
	Prop FW AS BUIL	604.89	605.39	0.55	225	1329	1554	0.42
22075		00 1105	000.03	0.0		1010	100 .	
21030	Effective HEC2	605.27	605.83	0.56	235	1178	1413	-0.39
21030	Prop FW AS BUIL	604.88	605.38	0.49	235	1352	1587	
	Effective HEC2	605.21	605.77	0.56	260	1885	2145	-0.34
20970	Prop FW AS BUIL	604.87	605.36	0.49	260	2005	2265	
20230	Effective HEC2	604.34	604.87	0.53	170	2050	2220	0.14
	Prop FW AS BUIL	604.48	604.89	0.41	170	2050	2220	0.14

19430	Effective HEC2	602.72	603.52	0.8	180	2030	2210	0.12
19430	Prop FW AS BUIL	602.84	603.56	0.71	180	2030	2210	
	Effective HEC2	600.65	601.32	0.67	150	1265	1415	0.11
17790	Prop FW AS BUIL	600.76	601.37	0.61	150	1265	1415	
16030	Effective HEC2	596.53	597.06	0.53	128.04	1367	1497	-0.06
	Prop FW AS BUIL	596.47	596.99	0.52	116	1379	1495	-0.00
10030	11001111713 2012	330.47	330.33	0.52	110	1373	1433	
15580	Effective HEC2	596.07	596.69	0.62	210	1345	1555	0
15580	Prop FW AS BUIL	596.07	596.69	0.62	210	1345	1555	

Travis Branch S	tream Restoration							7/15/2010
HEC DAC B:	Sinct Burnel Si	an Darib S	Short Duc and Di	au Duafila di	00 V-			
	er: First Broad Riv							
River Sta	Plan	W.S. Elev 100 yr.	W.S. Elev 100 yr w/FW	Prof Delta WS	Top Width Act	Encro. Sta LT	Encro. Sta RT	Project Impact Floodway Width Revised-Effective
		(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)
		, ,	. ,	. ,	. ,	. ,	. ,	. ,
27950	Effective HEC2	619.57	620.12	0.55	70	1330	1400	
27950	Prop FW AS BUIL	619.6	620.1	0.5	70	1330	1400	
	Effective HEC2	618.95	619.52	0.57	100	1327	1427	
27770	Prop FW AS BUIL	619.05	619.53	0.48	100	1327	1427	
	Effective HEC2	617.27	617.99	0.72	200	1530	1730	(
26840	Prop FW AS BUIL	617.47	618.03	0.56	200	1530	1730	
26070	Effective HEC2	616.0	617.57	0.77	250	1600	1950	
	-	616.8	617.57 617.61	0.77 0.58	250 250	1600	1850	
26070	Prop FW AS BUIL	617.03	617.61	0.58	250	1600	1850	
253∄∩	Effective HEC2	616.58	617.21	0.63	200	1745	1945	
	Prop FW AS BUIL	616.82	617.25	0.43	200	1745	1945	<u>'</u>
23340		310.02	317.23	0.75	230	1, 13	1343	
23335	Effective HEC2	615.77	616.05	0.28	180	1610	1790	
23335	Prop FW AS BUIL	615.99	616.08	0.09	180	1610	1790	
	·							
23245	Effective HEC2	615.65	615.94	0.29	120	1635	1755	
23245	Prop FW AS BUIL	615.94	615.97	0.03	120	1635	1755	
23201	Effective HEC2	614.44	614.82	0.48	28	1679	1707	11.
23201	Prop FW AS BUIL	615.92	615.96	0.04	143	1617	1760	
23180.5 BR U	Effective HEC2							
23180.5 BR U	Prop FW AS BUIL	615.92	615.96	0.04	128.17	1617	1760	
23180.5 BR D	Effective HEC2							
23180.5 BR D	Prop FW AS BUIL	615.79	615.8	0.01	115.41	1617	1760	
2318U.5 BK D	Prop FW AS BUIL	015.79	015.8	0.01	115.41	1017	1760	
23160	Effective HEC2	612.06	612.42	0.36	28	1679	1707	11
	Prop FW AS BUIL	610.21	610.21	0.50	143	1617	1760	
		010.21	010.21			1017	2.00	
23110	Effective HEC2	611.77	612.26	0.49	60	1665	1725	8:
23110	Prop FW AS BUIL	606.09	606.82	0.73	142	1618	1760	
22970	Effective HEC2	611.22	611.68	0.46	120	1645	1765	4
22970	Prop FW AS BUIL	605.77	606.37	0.6	160	1585	1745	
	Effective HEC2	608.46	609.19	0.73	140	1602	1742	
22440	Prop FW AS BUIL	605.49	606.13	0.64	145	1573	1718	
	B 514/ 12 51111		60= 6:		4.5			
22110	Prop FW AS BUIL	605.22	605.84	0.62	160	1536	1696	
24750	Effective UEC2	COC 45	607.37	0.02	100	4505	4755	
	Effective HEC2 Prop FW AS BUIL	606.45	607.27	0.82 0.57	160	1595 1629	1755 1789	
21/50	LIOD LAN W2 ROIT	605.02	605.58	0.57	160	1629	1/89	
21270	Effective HEC2	605.45	605.98	0.53	150	1210	1360	
	Prop FW AS BUIL	604.92	605.43	0.53	150	1189	1339	
212/0	. 100 1 11 73 0011	004.32	003.43	0.51	130	1109	1339	
21250	Effective HEC2	605.44	606	0.56	160	1200	1360	

21250	Prop FW AS BUIL	604.92	605.43	0.51	160	1159	1319	
21230	FTOPT W AS BOIL	004.92	003.43	0.51	100	1133	1319	
21085	Effective HEC2	605.31	605.89	0.58	190	1160	1350	0
	Prop FW AS BUIL	604.89	605.38	0.49	190	1290	1480	
	Effective HEC2	605.31	605.86	0.55	225	1200	1425	0
21075	Prop FW AS BUIL	604.89	605.39	0.5	225	1329	1554	
	Effective HEC2	605.27	605.83	0.56	235	1178	1413	0
21030	Prop FW AS BUIL	604.88	605.38	0.49	235	1352	1587	
20970	Effective HEC2	605.21	605.77	0.56	260	1885	2145	0
	Prop FW AS BUIL	604.87	605.36	0.49	260	2005	2265	0
20230	Effective HEC2	604.34	604.87	0.53	170	2050	2220	0
20230	Prop FW AS BUIL	604.48	604.89	0.41	170	2050	2220	
	Effective HEC2	602.72	603.52	0.8	180	2030	2210	0
19430	Prop FW AS BUIL	602.84	603.56	0.71	180	2030	2210	
17700	Effective HEC2	600.65	601.32	0.67	150	1265	1415	0
	Prop FW AS BUIL	600.65	601.32	0.67	150	1265	1415	U
17790	FIUP FW A3 BUIL	000.76	001.37	0.01	130	1205	1415	
16030	Effective HEC2	596.53	597.06	0.53	128.04	1367	1497	-12.04
	Prop FW AS BUIL	596.47	596.99	0.52	116	1379	1495	
	·							
	Effective HEC2	596.07	596.69	0.62	210	1345	1555	0
15580	Prop FW AS BUIL	596.07	596.69	0.62	210	1345	1555	
					_			
 								
—								

PHOTO UPSTREAM OF SECTION 21030

PHOTO UPSTREAM OF SECTION 21000

PHOTO AT SECTION 21270

PHOTO AT SECTION 21800

PHOTO UPSTREAM OF SECTION 22400

ENGINEER'S AS-BUILT CERTIFICATION

I, W. Henry Wells, Jr., PE, being duly registered to practice engineering in the State of North Carolina do hereby certify, based on the as-built survey information that was supplied to Sungate Design Group by K-2 Design Group, that the as-built Stream Restoration on Travis Creek in Alamance County was found to be in basic conformance with the alignment, profile and geometry shown in the approved CLOMR for the project.

W. Henry Wells, Jr., PE

SEAL 9334

SEAL 9334

7 | 14 | 16

ENGINEER'S STRUCTURE CERTIFICATION

I, W. Henry Wells, Jr., PE, being duly registered to practice engineering in the State of North Carolina do hereby certify that no structures were observed within the floodplain of Travis Creek that would be adversely impacted by the proposed decrease in the 1% annual chance water surface elevation caused by the Stream Restoration Construction.

W. Henry Wells, Jr., PE

U.S. DEPARTMENT OF HOMELAND SECURITY FEDERAL EMERGENCY MANAGEMENT AGENCY

OVERVIEW & CONCURRENCE FORM

O.M.B No. 1660-0016 Expires February 28, 2014

PAPERWORK BURDEN DISCLOSURE NOTICE

Public reporting burden for this form is estimated to average 1 hours per response. The burden estimate includes the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing, reviewing, and submitting the form. You are not required to respond to this collection of information unless it displays a valid OMB control number. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing this burden to: Information Collections Management, Department of Homeland Security, Federal Emergency Management Agency, 1800 South Bell Street, Arlington, VA 20958-3005, Paperwork Reduction Project (1660-0016). Submission of the form is required to obtain or retain benefits under the National Flood Insurance Program. Please do not send your completed survey to the above address.

PRIVACY ACT STATEMENT

AUTHORITY: The National Flood Insurance Act of 1968, Public Law 90-448, as amended by the Flood Disaster Protection Act of 1973, Public Law 93-234.

PRINCIPAL PURPOSE(S): This information is being collected for the purpose of determining an applicant's eligibility to request changes to National Flood Insurance Program (NFIP) Flood Insurance Rate Maps (FIRM).

ROUTINE USE(S): The information on this form may be disclosed as generally permitted under 5 U.S.C § 552a(b) of the Privacy Act of 1974, as amended. This includes using this information as necessary and authorized by the routine uses published in DHS/FEMA/NFIP/LOMA-1 National Flood Insurance Program (NFIP); Letter of Map Amendment (LOMA) February 15, 2006, 71 FR 7990.

DISCLOSURE: The disclosure of information on this form is voluntary; however, failure to provide the information requested may delay or prevent FEMA from processing a determination regarding a requested change to a (NFIP) Flood Insurance Rate Maps (FIRM).

CLOMR: A letter from DHS-FEMA commenting on whether a proposed project, if built as proposed, would justify a map revision, or

A. REQUESTED RESPONSE FROM DHS-FEMA

☑ LOMR: A elevations. (See	☑ LOMR: A letter from DHS-FEMA officially revising the current NFIP map to show the changes to floodplains, regulatory floodway or flood elevations. (See 44 CFR Ch. 1, Parts 60, 65 & 72)									
	B. OVERVIEW									
The NFIP map panel(s) affected for all impacted communities is (are):										
Community No.	Community Na	ame		State	Map No.	Panel No.	Effective Date			
Example: 480301 480287	City of Katy Harris County			TX TX	48473C 48201C	0005D 0220G	02/08/83 09/28/90			
370001	70001 Alamance County			NC	3710	8846	6/18/07			
2. a. Flooding Sou	2. a. Flooding Source: Travis Creek									
b. Types of Floo	oding: 🛛 Riverii	ne Coastal Shallow	v Flooding (e.g., 2	Zones AC	and AH)					
	☐ Alluvia	al fan 🔲 Lakes 🔲 Other ((Attach Description	on)						
3. Project Name/Id	lentifier: Aycock									
4. FEMA zone des	ignations affecte	ed: AE (choices: A, AH, AO, A1-A30,	, A99, AE, AR, V	, V1-V30,	VE, B, C, D, X)				
5. Basis for Reque	st and Type of R	Revision:								
a. The basis	for this revision r	equest is (check all that apply)								
☐ Physica	al Change		□ Regulatory	Floodway	/ Revision	☐ Base Map C	changes			
☐ Coasta	l Analysis		☐ Hydrologic	Analysis		☐ Corrections				
☐ Weir-Da	am Changes	☐ Levee Certification	Alluvial Far	n Analysis		☐ Natural Cha	nges			
⊠ New To	nographic Data	Other (Attach Description)								

This request is for a (check one):

proposed hydrology changes (See 44 CFR Ch. 1, Parts 60, 65 & 72).

Note: A photograph and narrative description of the area of concern is not required, but is very helpful during review.

b. The area of revision encome									
b. The area of revision encomp	basses the following structures (check	all that apply)							
Structures:	☐ Channelization ☐ Leve	ee/Floodwall	☐ Bridge/Culvert						
	☐ Dam ☐ Fill		Other (Attach D	escription)					
Documentation of ESA compli									
o. Documentation of ESA compil	ance is submitted (required to initiate	CLOMR review). Pi	ease refer to the inst	ructions for more information.					
n									
C. REVIEW FEE									
Has the review fee for the appropriate	request category been included?	ē	Yes F	ee amount: \$8000					
			No, Attach Explan						
Please see the DHS-FEMA Web site	at http://www.fema.gov/plan/prevent/f	hm/frm_fees.shtm	or Fee Amounts an	d Exemptions.					
	D. SIGI	NATURE							
All documents submitted in support of fine or imprisonment under Title 18 of	this request are correct to the best of the United States Code, Section 1001	my knowledge. I ur	derstand that any fa	lse statement may be punishable by					
Name: Raymond Holz		Company: Rest	oration Systems, LLC						
Mailing Address: 1011 Haynes Street #211		Daytime Telephone No.: 919-755-9490 Fax No.:							
Raleigh, NC 27604		E-Mail Address:	shulz@resto	rationsystems.com					
Signature of Requester (required)	ayout f.		Date: 7 . 14 -	1016					
As the community official responsible f (LOMR) or conditional LOMR request. of the community floodplain managem necessary Federal, State, and local pe applicant has documented Endangers LOMR requests, I acknowledge that c authorized, funded, or being carried of the ESA will be submitted. In addit or will be reasonably safe from flooding documentation used to make this dete	Based upon the community's review, ent requirements, including the require end Species Act (ESA) compliance to Floompliance with Sections 9 and 10 of out by Federal or State agencies, doc- ion, we have determined that the land g as defined in 44CFR 65.2(c), and the	we find the comple ements for when fill onditional LOMR, we EMA prior to FEMA the ESA has been a umentation from to and any existing o	ted or proposed proj is placed in the regu ill be obtained. For ('s review of the Con ichieved independer he agency showing i	ect meets or is designed to meet all latory floodway, and that all conditional LOMR requests, the ditional LOMR application. For ntly of FEMA's process. For actions to compliance with Section 7(a)(2) to be removed from the SEHA are					
Community Official's Name and Title:			Community Name:						
Mailing Address:		Daytime Telepho	ne No.:	Fax No.:					
		E-Mail Address:							
Community Official's Signature (require	ed):		Date:						
CERTIFICATION	ON BY REGISTERED PROFESS	ONAL ENGINEE	R AND/OR LAND	SURVEYOR					
This certification is to be signed and sealed by a licensed land surveyor, registered professional engineer, or architect authorized by law to certify elevation information data, hydrologic and hydraulic analysis, and any other supporting information as per NFIP regulations paragraph 65.2(b) and as described in the MT-2 Forms Instructions. All documents submitted in support of this request are correct to the best of my knowledge. I understand that any false statement may be punishable by fine or imprisonment under Title 18 of the United States Code, Section 1001.									
Certifier's Name: W. Henry Wells, Jr.		License No.: 93	34	Expiration Date: 12/31/16					
Company Name: Sungate Design Gro	oup, PA	Telephone No.:	919-859-2243	Fax No.: 909-859-6258					
Signature:	_ /	Date: 7-14-16	E-Mail Address:	hwells@sungatedesign.com					

Ensure the forms that are appropriate to your revision	THE STREET STREET	
Form Name and (Number)	Required if	SIN ORTH CARO
☑ Riverine Hydrology and Hydraulics Form (Form 2)	New or revised discharges or water-surface elevations	OFESSION TO
☑ Riverine Structures Form (Form 3)	Channel is modified, addition/revision of bridge/culverts, addition/revision of levee/floodwall, addition/revision of dam	SEAL P
☐ Coastal Analysis Form (Form 4)	New or revised coastal elevations	IN WOUNTER OF
☐ Coastal Structures Form (Form 5)	Addition/revision of coastal structure	Seak (Oppropal)
☐ Alluvial Fan Flooding Form (Form 6)	Flood control measures on alluvial fans	Manufacture .

U.S. DEPARTMENT OF HOMELAND SECURITY FEDERAL EMERGENCY MANAGEMENT AGENCY

RIVERINE HYDROLOGY & HYDRAULICS FORM

O.M.B No. 1660-0016 Expires February 28, 2014

PAPERWORK BURDEN DISCLOSURE NOTICE

Public reporting burden for this form is estimated to average 3.5 hours per response. The burden estimate includes the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing, reviewing, and submitting the form. You are not required to respond to this collection of information unless a valid OMB control number appears in the upper right corner of this form. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing this burden to: Information Collections Management, Department of Homeland Security, Federal Emergency Management Agency, 1800 South Bell Street, Arlington VA 20958-3005, Paperwork Reduction Project (1660-0016). Submission of the form is required to obtain or retain benefits under the National Flood Insurance Program. **Please do not send your completed survey to the above address.**

PRIVACY ACT STATEMENT

AUTHORITY: The National Flood Insurance Act of 1968, Public Law 90-448, as amended by the Flood Disaster Protection Act of 1973, Public Law 93-234.

PRINCIPAL PURPOSE(S): This information is being collected for the purpose of determining an applicant's eligibility to request changes to National Flood Insurance Program (NFIP) Flood Insurance Rate Maps (FIRM).

ROUTINE USE(S): The information on this form may be disclosed as generally permitted under 5 U.S.C § 552a(b) of the Privacy Act of 1974, as amended. This includes using this information as necessary and authorized by the routine uses published in DHS/FEMA/NFIP/LOMA-1 National Flood Insurance Program (NFIP); Letter of Map Amendment (LOMA) February 15, 2006, 71 FR 7990.

DISCLOSURE: The disclosure of information on this form is voluntary; however, failure to provide the information requested may delay or prevent FEMA from processing a determination regarding a requested change to a NFIP Flood Insurance Rate Maps (FIRM).

Flo	Flooding Source: Travis Creek								
No	ote: Fill out one form for each flooding source s	tudied							
	A. HYDROLOGY								
1.	Reason for New Hydrologic Analysis (check a	all that apply)							
	☐ Not revised (skip to section B)☐ Alternative methodology	☐ No existing analysis☐ Proposed Conditions (CLOM	R)	☐ Improved data☐ Changed physic	cal condition of watershed				
2.	Comparison of Representative 1%-Annual-Ch	ance Discharges							
	Location Drainage Area (Sq. Mi.) Effective/FIS (cfs) Revised (cfs)								
3.	3. Methodology for New Hydrologic Analysis (check all that apply)								
	☐ Statistical Analysis of Gage Records☐ Regional Regression Equations	☐ Precipitation/Runoff Model ☐ Other (please attach descript	. ,	.oder					
	Please enclose all relevant models in digital for new analysis.	_ " .	,	ation of parameters), a	and documentation to support the				
4.	Review/Approval of Analysis								
	If your community requires a regional, state, o	or federal agency to review the hyd	rologic anal	ysis, please attach ev	vidence of approval/review.				
5.	Impacts of Sediment Transport on Hydrology								
	Is the hydrology for the revised flooding source	e(s) affected by sediment transpor	t? 🗌 Ye	s 🗌 No					
	If yes, then fill out Section F (Sediment Transp	port) of Form 3. If No, then attach	your explan	ation					

B. HYDRAULICS

		B. HTDKA	ULICS				
1. Reach to be Revised							
	Descri	iption	Cross Section	Water-Surface Eleva Effective Pro	ations (ft.) oposed/Revised		
Downstream Limit*	Trib to Travis C	reek	20230	604.34 604	.48		
Upstream Limit*	Upstr Gibsonvi	lle Ossippee Rd	23245	<u>615.65</u> <u>615</u>	5.94		
*Proposed/Revised elevations must tie-into the Effective elevations within 0.5 foot at the downstream and upstream limits of revision.							
Hydraulic Method/Model Used:	HEC RAS Version 4	.1			<u> </u>		
Pre-Submittal Review of Hydrau							
DHS-FEMA has developed two respectively. We recommend th 4.					raulic models,		
Models Submitted	<u>Natu</u>	<u>ıral Run</u>		Floodway Run	<u>Datum</u>		
Duplicate Effective Model*	File Name:	Plan Name: DupEffMultTrunc	File Name	e: Plan Name: DupEffFWTrunc	NGVD 29		
Corrected Effective Model*	File Name:	Plan Name: CorrEffMultTrunc	File Name	e: Plan Name: CorrEffFWTrunc	NGVD 29		
Existing or Pre-Project Conditions Model	File Name:	Plan Name: ExCondMultTunc	File Name	e: Plan Name: EcCondFWTrunc	NGVD 29		
Revised or Post-Project Conditions Model	File Name:	Plan Name: ProMultTrunc	File Name	e: Plan Name: ProFWTrunc	NGVD 29		
Other - (attach description)	File Name:	Plan Name: ProMultAsbuilt	File Name	e: Plan Name: ProFWAsbult	NGVD 29		
* For details, refer to the correspon	ding section of the ins	structions.					
		Digital Models Submitt	ted? (Required)				
		C. MAPPING REQ	NUIDEMENTS				
		C. MAPPING REG	TOIREMENTS				
A certified topographic work may and proposed conditions 1%-annua floodplains and regulatory floodway indicated; stream, road, and other a property; certification of a registerer referenced vertical datum (NGVD, I	al-chance floodplain (f y (for detailed Zone Al alignments (e.g., dam d professional engine NAVD, etc.).	for approximate Zone A E, AO, and AH revision as, levees, etc.); curren eer registered in the sul gital Mapping (GIS/CAI	A revisions) or the boons); location and align at community easement bject State; location a	undaries of the 1%- and 0.2%-a nment of all cross sections with s nts and boundaries; boundaries and description of reference mar	nnual-chance stationing control of the requester's		
	<u> </u>	•	2/2/4				
Source: NCFMP		Date:	6/6/14				
Accuracy: 1.6							

Note that the boundaries of the existing or proposed conditions floodplains and regulatory floodway to be shown on the revised FIRM and/or FBFM must tie-in with the effective floodplain and regulatory floodway boundaries. Please attach **a copy of the effective FIRM and/or FBFM**, at the same scale as the original, annotated to show the boundaries of the revised 1%-and 0.2%-annual-chance floodplains and regulatory floodway that tie-in with the boundaries of the effective 1%-and 0.2%-annual-chance floodplain and regulatory floodway at the upstream and downstream limits of the area on revision.

D. COMMON REGULATORY REQUIREMENTS*

1.	For LOMR/CLOMR requests, do Base Flood Elevations (BFEs) increase?	☐ Yes ⊠ No
	a. For CLOMR requests, if either of the following is true, please submit evidence of compliance with Section 65.12 of the	NFIP regulations:
	 The proposed project encroaches upon a regulatory floodway and would result in increases above 0.00 foot compa conditions. 	red to pre-project
	 The proposed project encroaches upon a SFHA with or without BFEs established and would result in increases aboreompared to pre-project conditions. 	ove 1.00 foot
	b. Does this LOMR request cause increase in the BFE and/or SFHA compared with the effective BFEs and/or SFHA? If Yes, please attach proof of property owner notification and acceptance (if available). Elements of and examples of notifications can be found in the MT-2 Form 2 Instructions.	
2.	Does the request involve the placement or proposed placement of fill?	☐ Yes ☒ No
	If Yes, the community must be able to certify that the area to be removed from the special flood hazard area, to include any structures, meets all of the standards of the local floodplain ordinances, and is reasonably safe from flooding in accounting NFIP regulations set forth at 44 CFR 60.3(A)(3), 65.5(a)(4), and 65.6(a)(14). Please see the MT-2 instructions for more information of the community of the standard of the standard of the local floodplain ordinances, and is reasonably safe from flooding in accounting the standard of the local floodplain ordinances.	ordance with the
3.	For LOMR requests, is the regulatory floodway being revised?	⊠ Yes □ No
	If Yes, attach evidence of regulatory floodway revision notification . As per Paragraph 65.7(b)(1) of the NFIP Regulations, required for requests involving revisions to the regulatory floodway. (Not required for revisions to approximate 1%-annual-char [studied Zone A designation] unless a regulatory floodway is being established. Elements and examples of regulatory floodway notification can be found in the MT-2 Form 2 Instructions.)	nce floodplains
4.	For CLOMR requests, please submit documentation to FEMA and the community to show that you have complied with Section Endangered Species Act (ESA).	s 9 and 10 of the
	actions authorized, funded, or being carried out by Federal or State agencies, please submit documentation from the agnpliance with Section 7(a)(2) of the ESA. Please see the MT-2 instructions for more detail.	ency showing its

^{*} Not inclusive of all applicable regulatory requirements. For details, see 44 CFR parts 60 and 65.

DEPARTMENT OF HOMELAND SECURITY FEDERAL EMERGENCY MANAGEMENT AGENCY RIVERINE STRUCTURES FORM

O.M.B. NO. 1660-0016 Expires February 28, 2014

PAPERWORK BURDEN DISCLOSURE NOTICE

Public reporting burden for this form is estimated to average 7 hours per response. The burden estimate includes the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing, reviewing, and submitting the form. You are not required to respond to this collection of information unless a valid OMB control number appears in the upper right corner of this form. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing this burden to: Information Collections Management, Department of Homeland Security, Federal Emergency Management Agency, 1800 South Bell Street, Arlington, VA 20598-3005, Paperwork Reduction Project (1660-0016). Submission of the form is required to obtain or retain benefits under the National Flood Insurance Program. Please do not send your completed survey to the above address.

PRIVACY ACT STATEMENT

AUTHORITY: The National Flood Insurance Act of 1968, Public Law 90-448, as amended by the Flood Disaster Protection Act of 1973, Public Law 93-234.

PRINCIPAL PURPOSE(S): This information is being collected for the purpose of determining an applicant's eligibility to request changes to National Flood Insurance Program (NFIP) Flood Insurance Rate Maps (FIRM).

ROUTINE USE(S): The information on this form may be disclosed as generally permitted under 5 U.S.C § 552a(b) of the Privacy Act of 1974, as amended. This includes using this information as necessary and authorized by the routine uses published in DHS/FEMA/NFIP/LOMA-1 National Flood Insurance Program; Letter of Map Amendment (LOMA) February 15, 2006, 71 FR 7990.

DISCLOSURE: The disclosure of information on this form is voluntary; however, failure to provide the information requested may delay or prevent

FEMA	FEMA from processing a determination regarding a requested change to a NFIP Flood Insurance Rate Maps (FIRM).				
Flood	ing Source: Travis Cree	<u>k</u>			
Note	e: Fill out one form for ea	ach flooding source studied.			
			A. GENERAL		_
Comp	Channelization Bridge/Culvert Dam Levee/Floodwall	tion(s) for each Structure listecomplete Section Bcomplete Section Ccomplete Section Dcomplete Section E tcomplete Section F (if r			
Descr	ription Of Modeled Struc	<u>eture</u>			
1.	Name of Structure:				
	Type (check one):	☐ Channelization	☐ Bridge/Culvert	☐ Levee/Floodwall	☐ Dam
	Location of Structure:				
	Downstream Limit/Cros	ss Section:			
	Upstream Limit/Cross \$	Section:			
2.	Name of Structure:				
	Type (check one):	☐ Channelization	☐ Bridge/Culvert	☐ Levee/Floodwall	☐ Dam
	Location of Structure:				
	Downstream Limit/Cros	ss Section:			
	Upstream Limit/Cross S	Section:			
3.	Name of Structure:				
	Type (check one)	☐ Channelization	☐ Bridge/Culvert	☐ Levee/Floodwall	☐ Dam
	Location of Structure:				
	Downstream Limit/Cros	ss Section:			
	Upstream Limit/Cross	Section:			
		NOTE FOR MORE CONT	IOTUDEO ATTAOU ADDITION	IAL BAGES 40 VIEEDED	
		NOTE: FOR MORE STRU	ICTURES, ATTACH ADDITION	IAL PAGES AS NEEDED.	

	B. CHAI	NNELIZATION
Floo	ding Source: Travis Creek	
Nam	e of Structure: Stream Restoration	
1.	Hydraulic Considerations	
	The channel was designed to carry (cfs) and/or the 2-yea	ar flood.
	The design elevation in the channel is based on (check one):	
	Subcritical flow ☐ Critical flow	☐ Supercritical flow ☐ Energy grade line
	If there is the potential for a hydraulic jump at the following locati jump is controlled without affecting the stability of the channel.	ons, check all that apply and attach an explanation of how the hydraulic
	☐ Inlet to channel ☐ Outlet of channel ☐ At Drop Struct	ures
	Other locations (specify):	
2.	Channel Design Plans	
	Attach the plans of the channelization certified by a registered pr	ofessional engineer, as described in the instructions.
3.	Accessory Structures	•
0.		
	The channelization includes (check one): Levees [Attach Section E (Levee/Floodwall)] Drop si	ructures
		detention basin [Attach Section D (Dam/Basin)] Energy dissipator
	☐ Weir ☐ Other (Describe):	
4.	Sediment Transport Considerations	
Δ	Are the hydraulics of the channel affected by sediment transport?	☐ Yes No
	yes, then fill out Section F (Sediment Transport) of Form 3. If No	
	idered.	, their attacks your explanation for why occurrent transport was not
Г		GE/CULVERT
	ding Source:	
Nam	e of Structure:	
1.	This revision reflects (check one):	
	☐ Bridge/culvert not modeled in the FIS	
	☐ Modified bridge/culvert previously modeled in the FIS	
	Revised analysis of bridge/culvert previously modeled in the F	IIS
	Hydraulic model used to analyze the structure (e.g., HEC-2 with s If different than hydraulic analysis for the flooding source, justify w the structures. Attach justification.	pecial bridge routine, WSPRO, HY8):
	Attach plans of the structures certified by a registered professional (check the information that has been provided):	al engineer. The plan detail and information should include the following
	☐ Dimensions (height, width, span, radius, length)	☐ Distances Between Cross Sections
	☐ Shape (culverts only)	☐ Erosion Protection
	☐ Material	☐ Low Chord Elevations – Upstream and Downstream
	☐ Beveling or Rounding	☐ Top of Road Elevations – Upstream and Downstream
	☐ Wing Wall Angle	☐ Structure Invert Elevations – Upstream and Downstream
	☐ Skew Angle	☐ Stream Invert Elevations – Upstream and Downstream
		☐ Cross-Section Locations
4.	Sediment Transport Considerations	
	Are the hydraulics of the structure affected by sediment transport	? ☐ Yes ☐ No
		no, then attach an explanation.

D. DAM/BASIN	
Flooding Source: Name of Structure:	
1. This request is for (check one): Existing dam/basin New dam/basin Modification of existing dam/basin	
2. The dam/basin was designed by (check one): 🗌 Federal agency 🗋 State agency 🗎 Private organization 🗎 Local government agency	,
Name of the agency or organization:	
3. The Dam was permitted as (check one): ☐ Federal Dam ☐ State Dam	
Provide the permit or identification number (ID) for the dam and the appropriate permitting agency or organization	
Permit or ID number Permitting Agency or Organization	
a.	
Provided related drawings, specification and supporting design information.	
4. Does the project involve revised hydrology? ☐ Yes ☐ No	
If Yes, complete the Riverine Hydrology & Hydraulics Form (Form 2).	
Was the dam/basin designed using critical duration storm? (must account for the maximum volume of runoff)	
☐ Yes, provide supporting documentation with your completed Form 2.	
☐ No, provide a written explanation and justification for not using the critical duration storm.	
5. Does the submittal include debris/sediment yield analysis? ☐ Yes ☐ No	
If Yes, then fill out Section F (Sediment Transport). If No, then attach your explanation for why debris/sediment analysis was not considere	ed?
6. Does the Base Flood Elevation behind the dam/basin or downstream of the dam/basin change? ☐ Yes ☐ No	
If Yes, complete the Riverine Hydrology & Hydraulics Form (Form 2) and complete the table below.	
FREQUENCY (% annual chance) Stillwater Elevation Behind the Dam/Basin FIS REVISED	
10-year (10%)	
50-year (2%)	
100-year (1%)	
500-year (0.2%)	
Normal Pool Elevation	
7. Please attach a copy of the formal Operation and Maintenance Plan	
E. LEVEE/FLOODWALL	

1.	System Elements						
	a. This Levee/Floodwall analysis is based on (chec	k one):	upgrading of an existing levee/floodwall system		a newly constructed levee/floodwall system		reanalysis of an existing levee/floodwall system
	b. Levee elements and locations are (check one):						
	☐ earthen embankment, dike, berm, etc.	Station to					
	Other (describe):	Station to Station to					
	c. Structural Type (check one): monolithic cas	st-in place reinforced co	ncrete 🗌 reinford	ced co	oncrete masonry b	lock	sheet piling
	d. Has this levee/floodwall system been certified by	a Federal agency to pr	ovide protection fro	om the	e base flood?		
	☐ Yes ☐ No						
	If Yes, by which agency?						

	e.	Atta	ach certified dra	awings containing the following	information (indicate drawing s	sheet numbers):			
		1.	Plan of the leve	ee embankment and floodwall s	structures.		Sheet N	umbers:	<u></u>
				levee/floodwall system showing all crest and foundation, and clo	-		Shoot N	umbers:	
				BFE, closure opening outlet an		-	SHEELIN	umbers	
			of opening, and	d kind of closure.			Sheet N	umbers:	
			•	for the embankment protection			Sheet N	umbers:	
				ut, and size and shape of the leve cture, closure structures, and pu		ndation treatment,	Sheet N	umbers:	
2.	<u>Fr</u>	eebo	ard						
		a.	The minimum f	reeboard provided above the B	FE is:				
			<u>verine</u>						
				at the downstream end and thro	ughout			☐ Yes	□ No
				at the upstream end	and/ar constrictions			☐ Yes	□ No
		4.0	Tieet within 10	0 feet upstream of all structures	s and/or constrictions			☐ Yes	□ No
		Co	<u>astal</u>						
				e height of the one percent wav evation or maximum wave runu		ial-chance		☐ Yes	□No
		2.0) feet above the	e 1%-annual-chance stillwater s	surge elevation			☐ Yes	☐ No
				asionally exceptions are made t ddressing Paragraph 65.10(b)(1		rement. If an exception	on is req	uested, atta	ch
		If N	No is answered	to any of the above, please att	ach an explanation.				
	b.	ls tl	here an indicati	on from historical records that i	ce-jamming can affect the BFE	:? ☐ Yes	□ No		
	If Y	′es, p	orovide ice-jam	analysis profile and evidence t	hat the minimum freeboard dis	cussed above still exis	sts.		
3.	<u>C</u>	losur	<u>'es</u>						
	a.	Оре	enings through	the levee system (check one):	exists do	es not exist			
	If	oper	ning exists, list	all closures:					
	Cha	anne	l Station	Left or Right Bank	Opening Type	Highest Elevation		Type of	Closure Device
						Opening Inve	π		
(Fxt	end	tabl	e on an adde	d sheet as needed and refe	rence)				
,				geologic data					
In a	dditi lysis	on to	o the required the following	d detailed analysis reports, d system features should be s 1110-2-1906 Form 2086.)					

4.	<u>Em</u>	bankment Protection	<u>1</u>							
	a.	The maximum leve	e slope land sid	le is:						
	b.	The maximum leve	e slope flood sid	de is:						
	c.	The range of veloci	ties along the le	evee during th	e base flood is	: (min.)	to	_ (max.)		
	d.	Embankment mater	rial is protected	by (describe	what kind):					
	e.	Riprap Design Para Attach references	ameters (check	one):	☐ Velocity	ПТ	ractive sti	ress		
		Desel	Older	Flow		Curve or		Stone	Riprap	Double of T
		Reach	Sideslope	Depth	Velocity	Straight	D ₁₀₀	D ₅₀	Thickness	Depth of Toedown
Sta		to								
Sta		to								
Sta		to								
Sta		to								
Sta		to								
Sta		to								
(Exte	end to	able on an added sh	eet as needed	and reference	each entry)					
	f.	Is a bedding/filter a	nalysis and des	ign attached?	Yes [□ No				
	g.	Describe the analys				nclude copies	of the de	sign analy	/sis):	
Attac	ch en	ngineering analysis to	support consti	ruction plans.						
5.	<u>Em</u>	bankment And Foun	dation Stability							
	а.	Identify locations a	and describe the	basis for sel	ection of critica	I location for a	ınalysis:			
		Overall height:	Sta.:, he	eight ft.						
		☐ Limiting foundate	tion soil strengt	h:						
		Strength $\phi = $	degrees,	c = ps	f					
		Slope: SS = _	(h) to	(v)						
		(Repeat as nee	eded on an add	ed sheet for a	additional locat	ons)				
	b.	Specify the emban	kment stability	analysis meth	odology used	(e.g., circular a	arc, slidin	g block, ir	nfinite slope, etc.):	
	c.	Summary of stabili	ty analysis resu	ılts:						
ì										

E. LEVEE/FLOODWALL (CONTINUED) Embankment And Foundation Stability (continued) Case **Loading Conditions** Critical Safety Factor Criteria (Min.) 1 End of construction 1.3 Sudden drawdown Ш 1.0 111 Critical flood stage 1.4 IV Steady seepage at flood stage 1.4 VΙ Earthquake (Case I) 1.0 (Reference: USACE EM-1110-2-1913 Table 6-1) d. Was a seepage analysis for the embankment performed? ☐ Yes ☐ No If Yes, describe methodology used: e. Was a seepage analysis for the foundation performed? ☐ Yes ☐ No Were uplift pressures at the embankment landside toe checked? ☐ Yes ☐ No Were seepage exit gradients checked for piping potential? ☐ Yes ☐ No h. The duration of the base flood hydrograph against the embankment is _____ hours. Attach engineering analysis to support construction plans. 6. Floodwall And Foundation Stability a. Describe analysis submittal based on Code (check one): ☐ UBC (1988) Other (specify): b. Stability analysis submitted provides for: Overturning Sliding If not, explain: ____ c. Loading included in the analyses were: \square Lateral earth @ $P_A = \underline{\hspace{1cm}} psf; P_p = \underline{\hspace{1cm}} psf$ ☐ Surcharge-Slope @ _____, ☐ surface _____ psf ☐ Wind @ P_w = _____ psf ☐ Seepage (Uplift); _____ ☐ Earthquake @ P_{eq} = ______%g ☐ 1%-annual-chance significant wave height: ☐ 1%-annual-chance significant wave period: Summary of Stability Analysis Results: Factors of Safety. Itemize for each range in site layout dimension and loading condition limitation for each respective reach. Criteria (Min) Sta To Sta To Loading Condition Overturn Sliding Overturn Sliding Overturn Sliding Dead & Wind 1.5 1.5 Dead & Soil 1.5 1.5 Dead, Soil, Flood, & 1.5 1.5 Impact Dead, Soil, & Seismic 1.3 1.3

	(Ref: FEMA 114 Sept 1986; USACE EN Note: (Extend table on an added sheet a		
		EE/FLOODWALL (CONTINUED)	
6.	Floodwall And Foundation Stability (continued) e. Foundation bearing strength for each soil type:		
	Bearing Pressure	Sustained Load (nsf)	Short Term Load (nsf)

Bearing Pressure	Sustained Load (psf)	Short Term Load (psf)
Computed design maximum		
Maximum allowable		

	f.	Foundation scour protection \square is, \square is not provided. If provided, attach explanation and supporting documentation:
		Attach engineering analysis to support construction plans.
7.	Set	tlement
	a.	Has anticipated potential settlement been determined and incorporated into the specified construction elevations to maintain the established freeboard margin?
	b.	The computed range of settlement is ft. to ft.
	C.	Settlement of the levee crest is determined to be primarily from :
	d.	Differential settlement of floodwalls has has not been accommodated in the structural design and construction.
		Attach engineering analysis to support construction plans.
8.	Inte	erior Drainage
	a.	Specify size of each interior watershed:
		Draining to pressure conduit: acres Draining to ponding area: acres
	b.	Relationships Established
		Ponding elevation vs. storage
		Ponding elevation vs. gravity flow Yes No
		Differential head vs. gravity flow Yes No
	C.	The river flow duration curve is enclosed:
	d.	Specify the discharge capacity of the head pressure conduit: cfs
	e.	Which flooding conditions were analyzed?
		Gravity flow (Interior Watershed)
		Common storm (River Watershed)
		Historical ponding probability
		Coastal wave overtopping Yes No
		If No for any of the above, attach explanation.
	e.	Interior drainage has been analyzed based on joint probability of interior and exterior flooding and the capacities of pumping and outlet facilities to provide the established level of flood protection. \square Yes \square No If No, attach explanation.
	g.	The rate of seepage through the levee system for the base flood is cfs
	h.	The length of levee system used to drive this seepage rate in item g: ft.
		E. LEVEE/FLOODWALL (CONTINUED)
8.	Inte	rior Drainage (continued)
	i.	Will pumping plants be used for interior drainage? ☐ Yes ☐ No
		If Yes, include the number of pumping plants: For each pumping plant, list:

	Plant #1	Plant #2
The number of pumps		
The ponding storage capacity		
The maximum pumping rate		
The maximum pumping head		
The pumping starting elevation		
The pumping stopping elevation		
Is the discharge facility protected?		
Is there a flood warning plan?		
How much time is available between warning and flooding?		
Will the operation be automatic?	Yes	□ No
If the pumps are electric, are there backup power	sources?	□ No
(Reference: USACE EM-1110-2-3101, 3102, 31	03, 3104, and 3105)	
Include a copy of supporting documentation of da interior watersheds that result in flooding.	ata and analysis. Provide a map showing the floode	ed area and maximum ponding elevations for all
9. Other Design Criteria		
 a. The following items have been address 	sed as stated:	
Liquefaction ☐ is ☐ is not a problem Hydrocompaction ☐ is ☐ is not a pr Heave differential movement due to so		
b. For each of these problems, state the b	pasic facts and corrective action taken:	
Attach supporting documentation		
	d, will the structure adversely impact flood levels an upporting documentation	nd/or flow velocities floodside of the structure?
d. Sediment Transport Considerations:		
Was sediment transport considered? If Yes, then fill out Section F (Sedimen 10. Operational Plan And Criteria	☐ Yes ☐ No nt Transport). If No, then attach your explanation fo	or why sediment transport was not considered.
a. Are the planned/installed works in full of	compliance with Part 65.10 of the NFIP Regulations	s?
b. Does the operation plan incorporate al ☐ Yes ☐ No	II the provisions for closure devices as required in F	Paragraph 65.10(c)(1) of the NFIP regulations?
·	the provisions for interior drainage as required in Pa to any of the above, please attach supporting docu	
	E. LEVEE/FLOODWALL (CONTINUED)	

11.	Maintenance Plan Please attach a copy of the fomal maintenance plan for the levee/floodwall
12.	Operations and Maintenance Plan
	Please attach a copy of the formal Operations and Maintenance Plan for the levee/floodwall.
	CERTIFICATION OF THE LEVEE DOCUMENTION
hydro Form	certification is to be signed and sealed by a licensed registered professional engineer authorized by law to certify elevation information data, blogic and hydraulic analysis, and any other supporting information as per NFIP regulations paragraph 65.10(e) and as described in the MT-2 s Instructions. All documents submitted in support of this request are correct to the best of my knowledge. I understand that any false ment may be punishable by fine or imprisonment under Title 18 of the United States Code, Section 1001.
Certif	ier's Name: License No.: Expiration Date:
Com	pany Name: Telephone No.: Fax No.:
Signa	ature: Date: E-Mail Address:
	F. SEDIMENT TRANSPORT
Flood	ling Source:
Name	e of Structure:
and/d sedin	re is any indication from historical records that sediment transport (including scour and deposition) can affect the Base Flood Elevation (BFE); or based on the stream morphology, vegetative cover, development of the watershed and bank conditions, there is a potential for debris and nent transport (including scour and deposition) to affect the BFEs, then provide the following information along with the supporting mentation:
Sedir	nent load associated with the base flood discharge: Volume acre-feet
Debri	s load associated with the base flood discharge: Volume acre-feet
Sedir	ment transport rate (percent concentration by volume)
Meth	od used to estimate sediment transport:
	sediment transport formulas are intended for a range of hydraulic conditions and sediment sizes; attach a detailed explanation for using the ted method.
	Method used to estimate scour and/or deposition:
	Method used to revise hydraulic or hydrologic analysis (model) to account for sediment transport:
	se note that bulked flows are used to evaluate the performance of a structure during the base flood; however, FEMA does not map BFEs based alked flows.
	ediment analysis has not been performed, an explanation as to why sediment transport (including scour and deposition) will not affect the BFEs uctures must be provided.

ITE

5

ING

R

7

AS-BUILT SURVEY AND RECORD DRAWINGS AYCOCK SPRINGS SITE

SHEET TOTAL NO. SHEETS N.C. AYCOCK SPRINGS SITE

LOCATION: ALAMANCE COUNTY, NORTH CAROLINA

TYPE OF WORK: STREAM AND WETLAND RESTORATION AND ENHANCEMENT

(CLEARING, GRUBBING, GRADING, EROSION CONTROL AND PLANTING) START -UTI-STA 10+04 UT2 STA 10+00 PSH 04G END -UT2-PSH 04H END -UTI-STA 16+75 START -UT4-STA 10+00 STA 19+00 ŬT3 **TRAVIS** END -TRAVIS-STA 30+95 UT4 PSH 04D PSH 04B PSH /04C END -UT4-STA 14+13 Gibsonville Rd START -TRAVIS-STA 10+00

NOTE: TRAVIS CREEK IS LOCATED IN A FEMA DETAILED STUDY AREA.PROJECT TO BE CONSTRUCTED ACCORDING TO APPROVED CONSTRUCTION DOCUMENTS.ANY DEVIATIONS FROM THE PLANS WILL REQUIRE APPROVAL FROM THE ENGINEER AND FLOODPLAIN ADMINISTRATOR

INDEX OF SHEETS

SHEET

Key Sheet

Plan Construction As-Built Plan Provided by Surveyo

As-Built Plan Overlag

SHEET NUMBER

5 THRU 5H

THE STATE OF NORTH CAROLINA, DIVISION OF MITIGATION SERVICES

> DMS PROJECT ID# 96312 SPO FILE # 01-AA NC DMS CONTRACT # 5791 RFP# 16-005568 LAT 36.127271 N LONG 79.525214 W

PROPOSED LENGTH OF TRAVIS = 1550 LF PROPOSED LENGTH OF UT3 = 212 LF PROPOSED LENGTH OF UT1 = 1315 LF PROPOSED LENGTH OF UT2 = 675 LF PROPOSED LENGTH OF UT4= 413 LF TOTAL STREAM LENGTH = 4165 LF

、 I				
۱	RESTORATION LEVEL	STREAM (linear footage)	RIPARIAN WETLAND (acreage)	NONRIPARIAN WETLAND (acreage)
	RESTORATION	3357	0.5	0.0
	ENHANCEMENT	677	1.5	0.0
	TOTALS	4034	2.0	0.0
	MITIGATION UNITS	3628 SMUs	0.5 RIPARIAN WMUs	0.0 NONRIPARIAN WMUs


```
$JOB,72202ZTRAVIS,2084HA,HA,OUT=2084HA*TRAVISNA,PR=6
$*B72202Z
        ** FPMS BR FIA STUDY TRAVIS CR
                                          ALAMANCE CO, NC
                                                               BLW
C 274870** TOPO SEC ON HAW R , MOD BY SEC "AA"; NON-EFF FLOW (NEF) **
     120
                ** SURVEY SEC ATC-1 **
     850
                ** SEC ATC-2 **
C
     935
                ** SR 1593 OSSIPEE RD; SEC ATC-3; OVBKS FM ATC-2 **
C
     961
                ** SR 1593 ; OVBKS FM TOPO **
C
    1020
                ** TOPO SEC; CHAN FM ATC-3 **
C
    1650
                ** ATC-4 WITH NEF
C
    2825
                ** ATC-5 **
C
   4540
                ** TOPO; CHAN FM ATC-5 **
C
    5110
                ** TOPO; CHAN FM ATC-5 **
C
    5770
                ** ATC-6 , MOD FOR NEF **
С
   5810
                ** NC 87 , SEC ATC-7 **
                ** ATC-8 TRSF & MOD FOR NEF ROB **
С
    5930
C
    6150
                ** ATC-8 MOD FOR NEF ROB **
   7610
С
                ** ATC-9 , MOD FOR NEF AT HIGHER ELEV LOB **
C
    8310
                ** ATC-10 **
С
    8500
                ** TOPO SEC; NEF LOB & PORTIONS OF ROB FM RDWAY; CHAN FM ATC-10**
    8550
                ** PRIVATE RD **
C
    8569
                ** TOPO WITH NEF; PORTIONS OF ROB FM ROADWAY **
    9910
                ** ATC-12 **
                ** TOPO **
С
  10400
  11140
                ** ATC-13, MOD FOR NEF AT HIGHER ELEV LOB **
  12770
С
                ** ATC-14 **
  13900
                ** TOPO WITH CHAN FM ATC-14 **
                ** ATC-15; CHAN FM ATC-14 **
  14320
  14365
                ** SR 1504; SEC ATC-16 **
С
  14385
                ** SR 1504; OVBKS FM TOPO, WITH NEF **
  14435
                ** TOPO; CHAN FM 17 **
                ** ATC-17 **
C
  14880
  15580
                ** TOPO SEC; CHAN FM SEC ATC-17 **
  16030
C
                ** ATC-18 **
  17790
                ** ATC-19 **
                ** ATC-20, MOD FOR NEF LOB **
  19430
   20230
                ** TOPO SEC; CHAN FM ATC-20 **
С
  20970
                ** TOPO SEC; CHAN FM ATC-20 **
  21030
                ** TOPO SEC, MOD BY SEC 20-A AND NEF ROB **
                ** TOPO W/ OVBKS FM 21030; XLCH BASED ON NEW CHAN; STA NOT CHG**
С
  21075
C
  21085
                ** TOPO; OVBKS MOD BY 20A ROB; CHAN FM 20-A **
  21250
                ** SEC 20-A EXTENDED ON LOB **
С
  21270
                ** SEC 20-A W/CHAN FM SEC 21 **
                ** SEC 21 **
  21750
   22440
                ** TOPO, ADJ. BASED ON 23; NR OVBK & CHAN FM 21; NEF LOB **
  22970
                ** TOPO MOD BY SEC 23; CHAN FM ATC-21 **
C
                ** SR 1500; SEC ATC-22, MOD BY SEC 23 **
  23160
С
  23201
                ** SR 1500; OVBKS FM SEC 23 **
C
   23245
                ** SEC 23; OVBK FM 21 **
C
  23335
                ** PREVIOUS SEC TRANSFERRED **
  25340
                ** SEC 24 WITH NEF **
```

C C C T1	26070 26840 27770 27950	*	* SEC 25 * TOPO, W * TOPO, W * ATC-26	ITH HIGH ITH NEF **	HER ELEVS	TAKEN E M SEC 26	FM SEC 2! **		HAN FM SI	EC 25**
T2		.0 YR NATI		IRAVIS	CR ALA	AMANCE CO	D, NC B	LW		
Т3		RAVIS CR								
J1		6							573.5	
J2	1		-1							00
J3	38	1	3	42	41	0	38	7	13	14
J3 J3	15 54	55 4	26	56	0	38	1	53	21	22
NC	.12	.12	0 .06	150 .2	201 .4					
QT	7	13250	13250	13250	13250	10340	12200	16520		
	274870	24	1430	1548	10200	1.0010	12200	10020		
GR	590	1120	585	1175	580	1220	575	1260	570	1345
	569.7		569.6	1395	569.1	1430	557.5	1450	554.2	1462
	554.1	1472	554.0	1502	555.3	1512	554.4	1522	554.7	1532
	557.3	1542	570.6	1548		1560	573.5		576.0	1610
GR NC	579 .09	1660 .11	581.5	1755	585	1850	590	1935		
QT	7		.06 5150	5150	5150	2245	4100	8420		
ĒΤ	•	3.11	1650	1850	2130	2240	4100	0420		
X1	120		1806	1840	330	270	230			
GR	585.3	1000	580.6	1100	576.9	1200	573.1	1300	571.3	1400
	572.5	1500	572.1	1600	568.6	1700	568.3	1715	566.0	1800
	562.4	1806	556.2	1812	555.9	1825	556.6			1840
	563.8	1875	571.1	1900		1925	591.0	1975	592.7	
ET	850	9.1 24	9.1	9.1	9.1		9.1		1372	1552
X1	591.0	1000	1445 588.0	1478 1100	730 584.3	730 1200	730 578.5	1200	E7E /	1 2 2 2
	569.1	1370	567.4	1400	566.9	1434	563.9			1323 1447
	557.1	1451	557.3	1463	557.2	1472	563.7			1500
	570.4	1519	579.0	1600	580.2		583.8		585.1	1700
GR	587.6	1800	591.6	1900	595.0	2000	597.5			
ET		9.1			9.1				1878	1998
X1	935	16	1878	1998	85	85	85			
	10 588.0	1580	584.3	1600	570 E	1700	E7E /	576.7	576.7	1050
	567.5	1878	567.0	1680 1904	578.5 558.0	1780 1932	575.4 558.0	1803 1943	569.1 570.4	1850 1984
	570.4	1998	579.0	2080	580.2	2119	583.8	2136	585.1	2180
	587.6	2280			00012	2117	000.0	2100	303.1	2100
SB	1.0	1.60	2.5		11	3.0	1050	3.24	558.0	558.0
EΤ		9.11	9.11	9.11	9.11				1878	1998
X1	961	18	1878	1998	26	26	26			
X2	1.0		1	574.9	577.4					
X3 BT	10 12	1610	590		1710	EOE		577.4	577.4	
BT	1820	578.3	390	1878	1710 577.4	585	1878	1800 578.1	580 574.9	1998
	578.1	574.8	1998	577.4	J11.4	2100	578.6	J/0.1	2120	580
BT		2295	585		2365	590	0.0.0			300
GR	590	1610	585	1710	580	1800	578.3	1820	575	1865

GR 571.4 GR 558.0 GR 580 ET	1878 1943 2120 3.11	570 570.0 585 1880	1885 1982 2295	567.2 570.0 590	1894 1998 2365	567.0 575	1904 2050	558.0 578.6	1932 2100
X1 1020 GR 590 GR 567.2 GR 558.3 GR 575 NC .10	19 1610 1894 1943 2050	1925 585 566.9 558.2 580	2000 1958 1710 1914 1952 2120	59 580 564.9 564.7 585	59 1800 1925 1958 2295	59 575 559.3 566.5 590	1865 1927 1980 2365	570 558.1 570	1885 1931 2000
ET X1 1650 GR 599.4 GR 560.6 GR 569.1 GR 579.6 NC .11	3.11 20 1000 1120 1200 1600	1108 1118 590.9 560.3 569.7 582.8	1278 1148 1040 1134 1209 1700	630 572.2 560.1 571.5 588.7	630 1100 1145 1300 1800	630 568.7 567.0 574.9 596.2	1112 1148 1365 1900	565.1 570.8 577.6 599.3	1118 1150 1500 1950
ET X1 2825 GR 598.6 GR 571.7 GR 563.8 GR 587.0 ET	3.11 17 1000 1500 1614 1700 3.11	1460 1585 594.5 571.3 568.3 596.4	1640 1619 1100 1580 1619 1800	1175 590.4 569.1 570.8	1175 1200 1585 1624	1175 584.9 564.2 570.7	1300 1586 1635	581.1 562.9 583.4	1400 1603 1672
X1 4540 GR 590 GR 572.8 GR 574.5 GR 590 ET	16 1010 1585 1624 1775 3.11	1525 1585 585 567.9 574.4	1695 1619 1485 1586 1635	1715 580 566.6 575	1715 1500 1603 1670	1717 575 567.5 580	1545 1614 1720	574 572.0 585	1580 1619 1740
X1 5110 GR 600 GR 575 GR 573.1 GR 594	16 1210 1455 1619 1900	1585 595 573.9 575	1619 1240 1585 1640	570 590 569.0 580	570 1300 1586 1685	570 585 567.7 585	1340 1603 1740	580 568.6 590	1410 1614 1795
NC .10 QT 7 ET X1 5770	.10 5065 9.1 22	.06 5065 9.1 2035	5065 9.1 2110	5065 9.1 660	2200 9.1 660	4025 9.1 660	8275	2035	2110
GR 600.0 GR 579.0 GR 570.5 GR 569.8 GR 595.4 ET	1555 1900 2060 2100 2500 3.11	595.0 575.4 570.6 576.9 597.1 2049	1615 2000 2070 2110 2600 2094	590 577.2 570.0 585.1	1715 2035 2080 2200	586.2 569.2 569.9 590	1800 2037 2090 2300	583.6 569.5 569.0 590.9	1870 2050 2093 2400
X1 5810 X3 10	22	2050	2093	40	40	40	586.0	586.0	
GR 600 GR 579.0 GR 570.5 GR 576.7 GR 595.4	1555 1900 2060 2093 2500	595.0 575.4 570.6 576.9 597.1	1615 2000 2070 2110 2600	590 577.2 570.0 585.1	1715 2035 2080 2200	586.2 576.7 569.9 590	1800 2050 2090 2300	583.6 569.5 569.0 590.9	1870 2050 2093 2400

SB 1.25 ET	1.62 3.11	2.5	2094	43	3.0	520	0	567.7	567.0
X1 5867 X2	19	2050	2093 580.7	57 586.0	57	57			
X3 10 BT 13	1750	599.5		1850	591.7		586.3 1905	586.3 586.5	
BT 2000 BT 586.0	586.1 580.7	2093	2050 586.0	586.0	2200	2050 586.3	586.0	580.7 2260	2093 586.8
BT GR 599.5	2315 1750	590 591.7	1850	2395 586.5	595 1905	582.2	2510 1950	600 576.0	2050
GR 569.5 GR 569.0 GR 586.8	2050 2093 2260	570.5 575.2 590	2060 2093 2315	570.6 576.3 595	2070 2150 2395	570.0 580 600	2080 2170 2510	569.9	2090 2230
QT 7 ET	4760	4760	4760	4760	2070	3780	7790		
X1 5930	3.11 19	2025 2055	2135 2081	9.1 83	9.1 33	9.1 63		1990	2155
GR 607.0 GR 576.0	1590 2050	603.5 573.9	1650 2055	599.5 570.2	1750 2058	591.7 569.4	1850 2068	582.2 569.3	1950 2078
GR 572.3 GR 586.8 ET	2081 2260 3.11	575.0 590 2015	2085 2315 2155	576.3 595	2150 2395	580 600	2170 2510	585	2230
X1 6150 GR 607.0	19 1590	2055 603.5	2081 1650	220 599.5	220 1750	220 591.7	1850	582.2	1950
GR 576.0 GR 573.1 GR 586.8	2050 2081 2260	574.7 575.0 590	2055 2085 2315	571.0 576.3 595	2058 2150 2395	570.2 580 600	2068 2170 2510	570.1 585	2078 2230
NC .09 ET	.10 3.11	.06 1170	1330				1010		
X1 7610 GR 610	12	1257	1285	1460	1460	1460	1055	570.0	
GR 572.2 GR 605.6	1020 1271 1500	599.4 572.2 611.3	1100 1283 1600	577.6 576.7	1200 1285	577.4 580.3	1257 1300	572.2 594.7	1259 1400
NC .12 ET	.11 3.11	.06	1305						
X1 8310 GR 607.8	15 1000	1166 601.0	1190 1069	700 595.2	700 1100	700 585.5	1147	576.5	1166
GR 572.3 GR 577.6 ET	1172 1278 3.11	571.5 583.8 1015	1180 1300 1255	572.3 589.6	1188 1320 9.1	576.5 597.1	1190 1400	576.6 605.9 1138	1200 1500 1218
X1 8500 GR 605	18 875	1166 600	1190 925	190 595	190 955	190 590	975	585	1000
GR 580 GR 572.3 GR 594.6	1060 1188 1400	578 576.5 600.2	1085 1190 1500	576.5 580 604.5	1166 1200 1600	572.3 585	1172 1225	571.5 588.4	1180 1300
ET X1 8550	3.11	1000 1161	1240 1206	50	50	50			
X3 10 GR 605	875	600	925	595	955	590	585.0 975	585.0 585	1000
GR 580 GR 571.6	1060 1200	578 580.3	1085 1203	576.7 581.0	1161 1206	576.5 585	1165 1225	571.6 588.4	1166 1300
GR 594.6 SB 1.1	1400 1.47	600.2 2.5	1500	604.5 34	1600 4.8	509	0.37	571.6	571.6

ET X1 856 X2	3.11 59 18	980 1161 1	1230 1206 586.5	19 587.7	19	19			
X3 1 BT 1	.4 785	605		835	600		587.7 863	587.9 595.4	
BT 90 BT 587. BT	7 1300	1161 588.4	1000 587.7	587.8 586.4 1400	1206 594.6	1100 587.9	587.5 586.5 1500	1206 600.2	1161 587.9
BT 160 GR 60 GR 58 GR 571. GR 594.	785 785 980 980 6 1200 6 1400	600 578 580.3 600.2	835 1005 1203 1500	595.4 576.7 581.0 604.5	863 1161 1206 1600	590 576.5 585	885 1165 1225	585 571.6 588.4	915 1166 1300
NC .1 ET X1 861	3.11	.06 960 1166	1220 1190	41	9.1 41	41		1125	1230
GR 60 GR 58 GR 572. GR 594.	980 980 1188 1400	600 578 576.6 600.2	835 1005 1190 1500	595.4 576.6 580 604.5	863 1166 1200 1600	590 572.4 585	885 1172 1225	585 571.6 588.4	915 1180 1300
NC .0 ET X1 991 GR 612. GR 585. GR 574.	3.11 .0 19 .9 1000 .8 1500	.06 1520 1618 606.8 581.6 574.5	1720 1650 1100 1534 1648	1300 601.8 580.1 578.9	1300 1200 1600 1650	1300 598.3 579.0 580.7	1300 1618	594.0 574.5	1400 1621
GR 579. QT ET	1 1730 7 4620 3.11	588.5 4620 1515	1758 4620 1695	598.6 4620	1800 2000	608.3 3670	1657 1850 7565	578.7	1700
X1 1040 GR 60 GR 575. GR 585. NC .1	1375 14 1621 10 1710	1618 595 575.4 590	1650 1410 1634 1760	490 590 575.4 595	490 1455 1648 1870	490 585 579.8 600	1500 1650 1950	579.9 580	1618 1680
QT ET	7 3625 3.11	3625 1415	3625 1580	3625	1560	2870	5965		
X1 1114 GR 61 GR 576 GR 613	10 1150 .3 1462 .7 1546	1527 605 581.2 580.4	1548 1245 1500 1548	740 601.1 581.3 581.4	740 1300 1527 1555	740 596.2 577.0 594.4	1359 1529 1600	591.0 576.8 606.8	1400 1538 1700
ET X1 1277 GR 611. GR 583. GR 583.	3.11 70 15 .6 1000 .4 1208 .6 1300	1185 1208 602.8 578.9 583.7	1350 1230 1100 1210 1340	1630 599.6 579.3 596.9	1630 1135 1219 1400	1630 584.4 578.5 604.1	1182 1225 1500	583.5 583.1 609.8	1200 1230 1600
ET X1 1390 GR 61	10 900 36 1172	.06 1130 1208 605 585.4 586	1270 1230 960 1208 1260	1130 600 580.9 590	1130 1010 1210 1295	1130 595 581.3 595	1055 1219 1335	590 580.5 600	1105 1225 1400

GR QT ET	605 7	1550 3565 9.1	610 3565 9.1	1620 3565 9.1	3565	1530	2825	5870	7.643	1.70.6
X1	14320	19	1678	1700	9.1 420	9.1 420	9.1 420		1641	1736
	617.0	1000	610.9	1100	608.1	1200	604.7	1300	599.2	1400
	594.7 581.2	1489 1695	586.4 586.0	1600 1700	586.1 595.2	1678 1758	581.6	1680	582.0	1689
	604.3	2100	606.6	2200	611.3	2300	601.1 615.1	1900 2400	602.6	2000
ET		9.11	9.11	9.11	9.11	2000	010.1	2400	1660	1725
X1 X3	14365 10	22	1660	1725	45	45	45			
	617.0	1000	610.9	1100	608.1	1200	604.7	595.1 1300	595.1 600.8	1372
	599.2	1400	594.7	1489	586.4	1600	586.3	1660	586.3	1668
	581.3	1674	581.3	1713	589.5	1721	590.1	1725	595.2	1758
	595.7	1768	601.1	1900	602.6	2000	604.3	2100	606.6	2200
SB	611.3 0.95	2300	615.1	2400	2.0					
ET	0.95	1.44 9.11	2.7 9.11	9.11	39 9.11	1.44	639	1.04		581.3
	14385	19	1660	1725	21	21	21		1660	1725
X2		-	1	593.8	595.1	21	21			
Х3	10							595.1	595.1	
BT	19	1000	617.0		1100	612.2		1200	608.2	
BT	1295 595.2	605	1.000	1450	600	1.660	1520	596.2		1595
	593.8	1725	1600 595.2	595.1 593.7	1725	1660 595.2	595.2	1760	1660	595.2
BT	1900	599.2	393.2	2000	601.5	393.2	2100	1768 603.8	595.7	2200
BT	605.9		2300	611.3	00110	2400	615.1	000.0		2200
GR	617	1000	610.9	1100	608.1	1200	605	1295	600	1450
	596.2	1520	595	1545	590	1590	586.4	1623	586.3	1660
	586.3	1668	581.3	1674	581.3	1713	586.3	1717	586.7	1725
GR ET	590	1800 3.11	595 1635	1910 1735	600 9.1	2000 9.1	605	2220	1.007	1 7 7 7 0
	14435	18	1675	1707	50	50	9.1 50		1627	1772
GR	617	1000	610.9	1100	608.1	1200	605	1295	600	. 1450
GR	595	1545	590	1590	586.6	1623	585.4	1675	581.9	1680
	581.9	1690	581.5	1701	586.3	1707	586.7	1725	590	1800
GR	595	1910	600	2000	605	2220				
NC QT	.11	.09 3045	.06 3045	3045	3045	1300	2410	E020		
ET	,	3.11	1300	1570	3043	1300	2410	5030		
	14880	25	1366	1398	445	445	445			
GR	614.2	1000	612.9	1040	608.6	1053	610.5	1077	608.1	1100
	608.5	1121	591.4	1280	589.5	1300	586.1	1366	582.6	1371
	582.6	1381	582.2	1392	587.0	1398	586.8	1400	586.8	1500
	588.2	1600 2100	593.6 608.2	1700 2200	597.9 611.6	1800 2300	608.3	1900	605.5	2000
ET	000.5	3.11	1345	1555	011.0	2300	616.2	2400	618.7	2450
	15580	15	1366	1398	700	550	700			
GR	615	1240	610	1285	605	1300	600	1315	595	1335
GR	590	1350	588.1	1366	584.6	1371	584.6	1381	584.2	1392
	589.0	1398	590	1520	595	1580	600	1625	606	1780
NC	.10	.10	.06							

ET		3.11	1367	1497						
	16030	18	1442	1464	450	450	450			
	621.3	1000	617.3	1100	611.9	1200	602.9	1300	594.4	1400
	589.8	1429	589.3	1442	585.5	1445	586.0	1451	585.9	1457
	589.1	1464	597.3	1500	597.6	1508	602.3	1520	610.1	1550
	611.5	1600	618.5	1700	620.1	1750				
ET	1000	3.11	1265	1415						
	17790	21	1275	1300	1760	1760	1760			
	626.1	1000	622.4	1100	622.3	1152	619.5	1200	618.8	1220
	593.8 592.0	1265	593.1	1275	589.5	1277	589.8	1289	589.5	1299
	609.6	1300 1565	593.4 610.2	1317	593.2	1400	593.1	1447	603.4	1500
	620.4	1990	610.2	1600	612.3	1700	614.9	1800	617.0	1900
NC	.09	.11	.06							
ET	• 0 5	3.11	2030	2210						
	19430	18	2067	2096	1640	1640	1640			
GR	625	1245	620	1370	615	1570	610	1895	605	1980
GR	600	2020	596	2053	595.6	2067	591.8	2070	591.1	2080
GR	592.0	2092	595.8	2096	597.0	2100	600.2	2200	605.7	2300
GR	612.3	2400	618.1	2500	622.8	2600		2200	0001	2000
ΕT		3.11	2050	2220						
	20230	17	2067	2096	800	800	800			
GR	625	1210	620	1320	615	1740	610	1890	605	1990
GR	600	2050	597.3	2067	593.5	2070	592.8	2080	593.7	2092
	597.5	2096	600	2230	605	2275	610	2330	615	2365
GR	620	2400	625	2440						
QT	7	2910	2910	2910	2910	1240	2300	4810		
NC	.10	.11	.06	0.1.4.5						
ET X1	20970	3.11	1885	2145	600	740	7.40			
GR	625	17 960	2067 620	2096	600	740	740	1.500	CO.F	1700
GR	600	1940	598.5	1075 2067	615 594.7	1490 2070	610	1580	605	1700
	598.7	2096	600	2155	605	2195	594.0 610	2080 2235	594.9 615	2092 2260
GR	620	2300	625	2350	005	2195	010	2233	013	2260
QT	7	2335	2335	2335	2335	990	1840	3880		
NH	5	.10	1294	.06	1306	.10	1374	.06	1398	.11
NH	1525					• = 0	10,1	. 0 0	1330	•
EΤ		3.11	1178	1413						
X1	21030	21	1374	1398	10	150	60			
GR	620	385	615	795	610	885	605	1005	600	1245
	596.0	1294	595.1	1295	594.1	1300	595.1	1305	597.1	1306
	599.7	1346	599.3	1374	595.7	1376	594.7	1388	595.7	1396
	599.0	1398	600	1405	600	1425	605	1450	610	1480
GR	615	1525								
NH	5	.10	1294	.06	1306	.10	1370	.06	1398	.11
NH	1525	2 11	1000	1 40 5						
ET	21075	3.11 19	1200 1370	1425	4 5	4 =	1.65			
X1 GR	620	385	615	1398 795	45 610	45 885	165 605	1005	600	1015
	601.8	1294	600.9	1295	599.9	1300	600.9	1005 1305	602.9	1245 1306
	603.1	1370	599.4	1372	598.4	1388	599.4	1396	602.9	1398
GR		1425	605	1450	610	1480	615	1525	002.0	1000
		_ 100	000	1100	310	1100	010	1020		

X1 21085	NC .1	0 .11	.06							
GR 6200 340 615 780 610 885 605 1000 600.8 1200 GR 605 1365 610 1385 598.0 1300 599.7 1346 601.0 1348 GR 605 1365 610 1385 615 1425 620 1485 ET 3.11 1200 1360 850 608.9 1000 603.7 1100 600.8 1200 GR 601.3 1253 599.3 1255 598.0 1300 599.7 1346 601.0 1348 GR 601.3 1200 615 850 608.9 1000 603.7 1100 600.8 1200 GR 601.3 1253 590.0 608.9 1000 603.7 1100 600.8 1200 GR 625.5 100 615 850 608.9 1000 603.7 1100 600.8 1200 GR										
GR 601.3								1000		
GR 605 1365 610 1385 615 1425 620 1485 21 X1 21250 13 1253 1348 135 135 135 100 600.8 1200 GR 620 500 615 850 608.9 1000 603.7 1100 600.8 1200 GR 601.3 1253 599.0 1300 599.7 1346 601.0 1348 GR 604.8 1400 617.3 1500 620.9 1550 1288 1313 20 20 20 20 80 615 850 608.9 1000 603.7 1100 600.8 1200 660.1 1310 601.0 1348 604.8 1400 617.3 1500 600.9 1550 1200 603.7 1100 600.8 1200 601.1 1300 601.1 1310 601.0 1348 604.5 1400 617.3 1500 602.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
RT									601.0	1348
X1 21250					010	1425	020	1400		
GR 6201 500 615 850 608.9 1000 603.7 1100 600.8 1200 GR 601.3 1253 599.3 1255 598.0 1300 599.7 1346 601.0 1348 GR 604.8 1400 617.3 1500 620.9 1550 ET 3.11 1210 1360 7 1313 20 20 20 GR 620.5 500 615 850 608.9 1000 603.7 1100 600.8 1200 GR 601.3 1253 600.7 1288 599.5 1293 598.0 1300 599.1 1310 GR 601.3 1255 1557 1313 601.0 1348 604.8 1400 617.3 1500 699.1 1500 GR 601.3 1650 600.4 1400 621.3 1400 617.3 1500 600.7 1652 GR 602.	X1 2125				135	135	135			
GR 601.3			615					1100	600.8	1200
FT					598.0	1300	599.7			
X1 21270					620.9	1550				
GR 620 500 615 850 608.9 1000 603.7 1100 600.8 1200 GR 601.3 1253 600.7 1288 599.5 1293 598.0 1300 599.1 1310 GR 600.7 1313 601.0 1348 604.8 1400 617.3 1500 620.9 1550 ET 3.11 1595 1755 1755 1755 1755 1755 1755 17										
GR 601.3								1100		
GR 600.7										
ET 3.11 1595 1755 480 480 480 686.5 1600 623.4 1100 621.0 1200 618.1 1300 610.1 1400 686 605.9 1500 604.9 1540 603.2 1576 601.5 1600 600.7 1652 68 599.5 1657 598.0 1664 599.1 1674 600.7 1677 602.4 1700 68 620.8 2100 624.0 2200 629.6 2300 800. 1.0 1.0 .06 800.7 1652 613.3 11 1602 1742 811 22440 16 1652 1677 690.6 613.5 1630 604.7 1600 68 603.9 1652 602.7 1657 601.2 1664 602.3 1674 603.9 1677 68 605.6 1700 605.8 1765 614.0 1795 618.0 1830 622.5 1870 68 605.5 1920 8129 810 623.7 1270 617.5 1430 612.5 1540 607. 1700 68 607.2 1700 605.8 1682 605.3 1687 603.8 1694 604.9 1704 606.5 1707 68 607.2 1792 613.0 1840 618.0 1880 621.0 1960 624.8 2050 68 609.2 1707 2240 2240 2240 2240 950 1770 3735 81 1665 1682 605.3 1687 603.8 1694 604.9 1704 606.5 1707 68 609.4 2230 812 199.1 9.1 9.1 9.1 1665 1725 812 110 16 1682 1707 210 90 140 68 632.7 1155 622.0 1340 617.5 1470 612.5 1560 606.9 1630 68 606.9 1755 612.6 613.8 1687 603.8 1694 604.9 1704 606.5 1707 68 609.4 2230 81 1694 606.9 1705 618.0 1800 624.8 2050 68 629.4 2230 81 1694 606.9 1700 605.8 1687 603.8 1694 604.9 1704 606.5 1707 68 609.2 1792 613.0 1840 618.0 1880 621.0 1960 624.8 2050 68 629.4 2230 81 199.1 9.1 9.1 9.1 9.1 9.1 1665 1725 812 110 16 1682 1707 210 90 140 68 606.5 1682 605.8 1687 604.3 1694 605.4 1704 606.5 1707 68 606.9 1755 612.6 613.8 1687 604.3 1694 605.4 1704 606.5 1707 68 606.9 1755 612.6 613.8 1687 604.3 1694 605.4 1704 606.5 1707 68 606.5 1682 605.8 1687 604.3 1694 605.4 1704 606.5 1707 68 606.5 1682 605.8 1687 604.3 1694 605.4 1704 606.5 1707 68 606.5 1682 605.8 1687 604.3 1694 605.4 1704 606.5 1707 806.6 1682 605.8 1687 604.3 1694 605.4 1704 606.5 1707 806.6 1682 605.8 1687 604.3 1694 605.4 1704 606.5 1707 806.6 1682 605.8 1687 604.3 1694 605.4 1704 606.5 1707 806.6 1682 605.8 1687 604.3 1694 605.4 1704 606.5 1707 806.6 1682 605.8 1687 604.3 1694 605.4 1704 606.5 1707 806.6 168.0 1707 806.5 1606 606.9 1755 612.6 1800 618.0 1800 618.0 1800 618.0 1800 618.0 1800 618.0 1800 618.0 1800 618.0 1800 618.0 1800 618.0 1800 618.0 1800 618.0 1800 618.0 1800 618.										
X1 21750					0.4.0	1400	017.3	1300	020.9	1550
GR 625.5 1000 623.4 1100 621.0 1200 616.1 1300 610.1 1400 GR 605.9 1500 604.9 1540 603.2 1576 601.5 1600 600.7 1652 GR 599.5 1657 598.0 1664 599.1 1674 600.7 1677 602.4 1700 GR 602.6 1785 604.5 1800 610.3 1826 619.7 1900 621.4 2000 GR 620.8 2100 624.0 2200 629.6 2300 FET 3.11 1602 1742 X1 22440 16 1652 1677 690 690 690 GR 628.5 1245 622.0 1350 618.5 1435 613.3 1530 604.7 1600 GR 630.9 1652 602.7 1657 601.2 1664 602.3 1674 603.9 1677 GR 603.9 1652 602.7 1657 601.2 1664 602.3 1674 603.9 1677 GR 627.5 1920 FET 3.11 1645 1765 9.1 9.1 9.1 9.1 1620 1770 X1 22970 16 1682 1707 530 530 530 FET 3.11 622 1707 530 530 530 FET 3.11 626 623.7 1270 617.5 1430 612.5 1540 607 1610 GR 603.2 1792 613.0 1840 618.0 1880 621.0 1960 624.8 2050 GR 629.4 2230 CT 7 2240 2240 2240 2240 950 1770 3735 FET 9.1 9.1 9.1 9.1 1665 1725 X1 23110 16 1682 1707 210 90 140 GR 632.7 1155 622.0 1340 617.5 1470 612.5 1560 606.9 1630 GR 606.5 1682 605.8 1687 604.3 1694 604.9 1704 606.5 1707 GR 632.7 1155 622.0 1340 617.5 1470 612.5 1560 606.9 1630 GR 606.5 1682 605.8 1687 604.3 1694 604.9 1704 606.5 1705 GR 632.7 1155 622.0 1340 617.5 1470 612.5 1560 606.9 1630 GR 606.5 1682 605.8 1687 604.3 1694 604.9 1704 606.5 1705 GR 632.7 1155 622.0 1340 617.5 1470 612.5 1560 606.9 1630 GR 606.5 1682 605.8 1687 604.3 1694 605.4 1704 606.5 1707 GR 606.9 1755 612.6 1800 618.0 1870 621.0 1950 624.8 2050 GR 629.4 2230 TET 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1					480	480	480			
GR 605.9 1500 604.9 1540 603.2 1576 601.5 1600 600.7 1652 GR 599.5 1657 598.0 1664 599.1 1674 600.7 1677 602.4 1700 GR 602.6 1785 604.5 1800 610.3 1826 619.7 1900 621.4 2000 GR 620.8 2100 624.0 2200 629.6 2300	GR 625.							1300	610.1	1400
GR 599.5 1657 598.0 1664 599.1 1674 600.7 1677 602.4 1700 GR 602.6 1785 604.5 1800 610.3 1826 619.7 1900 621.4 2000 GR 620.8 2100 624.0 2200 629.6 2300	GR 605.	9 1500	604.9							
GR 620.8				1664	599.1	1674	600.7	1677		
NC .10							619.7	1900	621.4	2000
ET				2200	629.6	2300				
X1 22440 16 1652 1677 690 690 690 GR 628.5 1245 622.0 1350 618.5 1435 613.3 1530 604.7 1600 GR 603.9 1652 602.7 1657 601.2 1664 602.3 1674 603.9 1677 GR 605.6 1700 605.8 1765 614.0 1795 618.0 1830 622.5 1870 GR 627.5 1920 ET 3.11 1645 1765 9.1 9.1 9.1 1620 1770 X1 22970 16 1682 1707 530 530 530 530 632 1610 663.1 1610 663.1 1610 663.1 1610 663.1 1610 663.1 1610 663.1 1610 663.1 1610 663.1 1610 663.1 1610 663.1 1600 1610 663.1 1610 663.1 1610 663.1 1600 1610 663.1 1600 1600 1600<				4546						
GR 628.5 1245 622.0 1350 618.5 1435 613.3 1530 604.7 1600 GR 603.9 1652 602.7 1657 601.2 1664 602.3 1674 603.9 1677 GR 605.6 1700 605.8 1765 614.0 1795 618.0 1830 622.5 1870 GR 627.5 1920 ET 3.11 1645 1765 9.1 9.1 9.1 1620 1770 X1 22970 16 1682 1707 530 530 530 607 1610 667.1 610.0 667.1 610.0 667.1 610.0 667.1 610.0 667.2 1540 607.1 610.0 667.2 170 610.0					600	600	600			
GR 603.9 1652 602.7 1657 601.2 1664 602.3 1674 603.9 1677 GR 605.6 1700 605.8 1765 614.0 1795 618.0 1830 622.5 1870 GR 627.5 1920								1 5 2 0	CO 4 7	1.600
GR 605.6 1700 605.8 1765 614.0 1795 618.0 1830 622.5 1870 GR 627.5 1920										
GR 627.5 1920 ET 3.11 1645 1765 9.1 9.1 9.1 9.1 1620 1770 X1 22970 16 1682 1707 530 530 530 530 GR 632.7 1130 623.7 1270 617.5 1430 612.5 1540 607 1610 GR 606.5 1682 605.3 1687 603.8 1694 604.9 1704 606.5 1707 GR 607.2 1792 613.0 1840 618.0 1880 621.0 1960 624.8 2050 GR 629.4 2230 2240 2240 2240 950 1770 3735 775 775 775 775 775 777 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
ET 3.11 1645 1765 9.1 9.1 9.1 9.1 1620 1770 X1 22970 16 1682 1707 530 530 530 530 623.7 160 1610 667 1610 6611 160 6611 1610 1680 1610 1810 1810 1810 1810 1810 1810 1810 1810 1810 1810			000.0	1,00	014.0	1770	010.0	1030	022.0	1070
X1 22970			1645	1765	9.1	9.1	9.1		1620	1770
GR 606.5 1682 605.3 1687 603.8 1694 604.9 1704 606.5 1707 GR 607.2 1792 613.0 1840 618.0 1880 621.0 1960 624.8 2050 GR 629.4 2230	X1 2297	0 16	1682							
GR 607.2 1792 613.0 1840 618.0 1880 621.0 1960 624.8 2050 GR 629.4 2230				1270	617.5	1430	612.5	1540	607	1610
GR 629.4 2230 QT 7 2240 2240 2240 2240 950 1770 3735 ET 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 1665 1725 X1 23110 16 1682 1707 210 90 140 1665 1725 GR 632.7 1155 622.0 1340 617.5 1470 612.5 1560 606.9 1630 GR 606.5 1682 605.8 1687 604.3 1694 605.4 1704 606.5 1707 GR 606.9 1755 612.6 1800 618.0 1870 621.0 1950 624.8 2050 GR 629.4 2230 1 9.11 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
QT 7 2240 2240 2240 2240 950 1770 3735 ET 9.1 9.1 9.1 9.1 9.1 9.1 9.1 1665 1725 X1 23110 16 1682 1707 210 90 140 1665 1725 GR 632.7 1155 622.0 1340 617.5 1470 612.5 1560 606.9 1630 GR 606.5 1682 605.8 1687 604.3 1694 605.4 1704 606.5 1707 GR 606.9 1755 612.6 1800 618.0 1870 621.0 1950 624.8 2050 GR 629.4 2230			613.0	1840	618.0	1880	621.0	1960	624.8	2050
ET 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 140 X1 23110 16 1682 1707 210 90 140 GR 632.7 1155 622.0 1340 617.5 1470 612.5 1560 606.9 1630 GR 606.5 1682 605.8 1687 604.3 1694 605.4 1704 606.5 1707 GR 606.9 1755 612.6 1800 618.0 1870 621.0 1950 624.8 2050 GR 629.4 2230 ET 9.11 9.11 9.11 9.11 9.11 9.11 1679 1707 X1 23160 15 1679 1707 50 50 50 GR 632.7 1155 622.0 1340 617.5 1470 612.5 1560 606.9 1630 GR 606.5 1679 604.7 1679 604.7 1707 606.5 1707 606.9 1755 GR 612.6 1800 618.0 1870 621.0 1950 624.8 2050 629.4 2230 SB 1.25 1.57 2.7 28 1 189 0 604.6 604.7 ET 9.11 9.11 9.11 9.11 9.11			0040	0040	0040	0.5.0	1	0.00.5		
X1 23110								3735	1.000	1705
GR 632.7 1155 622.0 1340 617.5 1470 612.5 1560 606.9 1630 GR 606.5 1682 605.8 1687 604.3 1694 605.4 1704 606.5 1707 GR 606.9 1755 612.6 1800 618.0 1870 621.0 1950 624.8 2050 GR 629.4 2230									1002	1/25
GR 606.5 1682 605.8 1687 604.3 1694 605.4 1704 606.5 1707 GR 606.9 1755 612.6 1800 618.0 1870 621.0 1950 624.8 2050 GR 629.4 2230								1560	606 9	1630
GR 606.9 1755 612.6 1800 618.0 1870 621.0 1950 624.8 2050 GR 629.4 2230										
GR 629.4 2230 ET 9.11 9.11 9.11 9.11 9.11 5.0 50 50 50										
X1 23160	GR 629.	4 2230								
X3 10 GR 632.7 1155 622.0 1340 617.5 1470 612.5 1560 606.9 1630 GR 606.5 1679 604.7 1679 604.7 1707 606.5 1707 606.9 1755 GR 612.6 1800 618.0 1870 621.0 1950 624.8 2050 629.4 2230 SB 1.25 1.57 2.7 28 1 189 0 604.6 604.7 ET 9.11 9.11 9.11 9.11									1679	1707
GR 632.7 1155 622.0 1340 617.5 1470 612.5 1560 606.9 1630 GR 606.5 1679 604.7 1679 604.7 1707 606.5 1707 606.9 1755 GR 612.6 1800 618.0 1870 621.0 1950 624.8 2050 629.4 2230 SB 1.25 1.57 2.7 28 1 189 0 604.6 604.7 ET 9.11 9.11 9.11 9.11			1679	1707	50	50	50			
GR 606.5 1679 604.7 1679 604.7 1707 606.5 1707 606.9 1755 GR 612.6 1800 618.0 1870 621.0 1950 624.8 2050 629.4 2230 SB 1.25 1.57 2.7 28 1 189 0 604.6 604.7 ET 9.11 9.11 9.11 9.11			500	1040	64.5.5	4.50				
GR 612.6 1800 618.0 1870 621.0 1950 624.8 2050 629.4 2230 SB 1.25 1.57 2.7 28 1 189 0 604.6 604.7 ET 9.11 9.11 9.11 9.11 1679 1707										
SB 1.25 1.57 2.7 28 1 189 0 604.6 604.7 ET 9.11 9.11 9.11 1679 1707										
ET 9.11 9.11 9.11 1679 1707				10/0						
				9.11		Т.	109	U		
						41	41		_0,0	2,01

X2 X3	10		1	611.6	615.2					
BT BT	18 1300	1000 624.0	636.6	1400	1100 623.4		1500	1200	615.5 627.8	
BT	615.9		1600	615.5		1679	1500 615.2	620.4	1679	1575 615.2
BT BT	611.6 1857	1707 617.8	615.5	611.6 1900	1707	615.5		1800	616.6	
	625.6	017.0	2200	629.4	621.7		2000	626.8		2100
	636.6	1000	631.7	1100	627.8	1200	624.0	1300	623.4	1400
	620.4 604.6	1500 1679	615.9 604.6	1575 1707	614.1 606.5	1600 1707	606.8 606.9	1648 1755	606.5 612.6	1679 1800
GR	617.8	1857	621.7	1900	626.8	2000	625.6	2100	629.4	2200
NC ET	.11	.11 9.1	.06 9.1	0 1	0 1	0 1	0 1			
	23245	19	1682	9.1 1707	9.1 44	9.1 44	9.1 44		1635	1755
	636.6	1000	631.7	1100	627.8	1200	624.0	1300	623.4	1400
	620.4 604.4	1500 1694	614.1 605.5	1600 1704	606.8	1648	606.6	1682	605.9	1687
	621.7	1900	626.8	2000	606.6 625.6	1707 2100	606.9 629.4	1755 2200	612.6	1800
ET		3.11	1610	1790						
X1 QT	23335	2145	2145	2145	90 2145	90 905	90 1690	2570	0.1	
ET	,	3.11	1745	1945	2143	903	1090	3570		
	25340	19	1764	1785	2005	2005	2005			
GR GR	640.9 615	1000 1540	637.0 610.9	1100 1730	631.0 610.1	1200 1764	625.5	1300	620.0	1440
	607.3	1778	609.9	1785	609.7	1800	606.7 609.7	1767 1900	607.0 609.9	1772 2000
GR	615	2050	625	2115	634.5	2200	644.3	2300	003.3	2000
NC QT	.10	.11 1570	.06 1570	1 5 7 0	1570	CFF	1005	0.605		
ET	/	3.11	1600	1570 1850	1570	655	1235	2635		
X1	26070	21	1642	1658	730	640	730			
	640.6 620.8	1000	637.7	1100	636.3	1120	632.5	1200	625.9	1300
	607.7	1400 1645	618.3 608.1	1500 1650	616.9 608.0	1520 1654	612.3 610.1	1600 1658	611.0 610.7	1642 1700
GR	612.0	1800	613.8	1900	625	1990	630	2055	635	2150
	640	2215	0.0							
NC QT	.09 7	.10 1500	.06 1500	1500	1500	625	1180	2520		
ET		3.11	1530	1730		020	1100	2320		
	26840	17	1642	1658	600	770	770	1005	600	4 4 0 0
GR	640.6 615	950 1490	637.7 613.1	1100 1642	632 609.8	1200 1645	625 610.2	1285 1650	620 610.1	1400 1654
	612.2	1658	614	1750	615	1760	620	1795	625	1835
GR	630	1910	635	2070						
ET x1	27770	3.11 15	1327 1353	1427 1371	930	930	930			
GR	635	900	630	1000	625	1200	620	1270	615	1330
	614.6	1349	613.0	1353	612.9	1358	613.3	1364	614.0	1371
GR ET	615	1430 3.11	620 1330	1460 1400	625	1535	630	1605	635	1635
	27950	14	1353	1371	180	180	180			

GR	638.8	1000	631.9	1100	630.	. 3	1200	629.7	1271	625.4	1300
GR	616.9	1335	615.0	1349	613.	. 4	1353	613.3	1358	613.7	
GR	614.4	1371	618.8	1400	635.	. 4	1500	643.3	1539		2001
EJ											
T1	FPM	IS BR FI	A STUDY	TRAVIS	CR	ALAMA	ANCE CO	, NC BLW			
T2		YR NATU						,			
Т3	TRA	VIS CR									
J1		7								575.0	
J2	2		-1								
T1	FPM	IS BR F	TIA STUDY	TRAVIS	CR	ALAMA	ANCE CO	., NC	BLW		
Т2	100	YR NAI	'URAL								
Т3	TRA	VIS CR									
J1		5								575.7	
J2	3		-1								
T1	FPM	IS BR F	IA STUDY	TRAVIS	CR	ALAMA	ANCE CO	., NC	BLW		
T2		YR NAI	URAL								
Т3	TRA	VIS CR									
J1		8								577.6	
J2	15		-1								

ER

SEE FIS REPORT FOR ZONE DESCRIPTIONS AND INDEX MAP THE INFORMATION DEPICTED ON THIS MAP AND SUPPORTING DOCUMENTATION ARE ALSO AVAILABLE IN DIGITAL FORMAT AT HTTP://FRIS.NC.GOV/FRIS

Without Base Flood Elevation (BFE)

For information and questions about this map, available products associated with this FIRM including historic versions of this FIRM, how to order products or the National Flood Insurance Program in general please call the FEMA Map Information eXchange at 1-877-FEMA-MAP (1-877-336-2627) or visit the FEMA Map Service Center website at http://msc.fema.gov. An accompanying Flood Insurance Study report, Letter of Map Revision (LOMR) or Letter of Map Amendment (LOMA) revising portions of this panel, and digital versions of this FIRM may be available. Visit the North Carolina Floodplain Mapping Program website at http://www.ncfloodmaps.com or contact the FEMA Map Service Center.

Communities annexing land on adjacent FIRM panels must obtain a current copy of the adjacent panel as well as the current FIRM Index. These may be ordered directly from the Map Service Center at the number listed above. For community and countywide map dates refer to the Flood Insurance Study report for this jurisdiction. To determine if flood insurance is available in the community, contact your Insurance agent or call the National Flood Insurance Program at 1-800-638-6620.

Base map information shown on this FIRM was provided in digital format by the North Carolina Floodplain Mapping Program (NCFMP). The source of this information can be determined from the metadata available in the

digital FLOOD database and in the Technical Support Data Notebook (TSDN). ACCREDITED LEVEE NOTES TO USERS: If an accredited levee note appears on this panel check with your local community to obtain more information, such as the estimated level of protection provided (which may exceed the 1-percent annual-chance level) and Emergency Action Plan, on the levee system(s) shown as providing protection. To mitigate flood risk in residual risk areas, property owners and residents are encouraged to consider flood

PROVISIONALLY ACCREDITED LEVEE NOTES TO USERS: If a Provisionally Accredited Levee (PAL) note appears on this panel, check with your local community to obtain more information, such as the estimated level of protection provided (which may exceed the 1-percent-annual-chance level) and Emergency Action Plan, on the levee system(s) shown as providing protection. To maintain accreditation, the levee owner or community is required to submit the data and documentation necessary to comply with Section 65.10 of the NFIP regulations. If the community or owner does not provide the necessary data and documentation or if the data and documentation provided indicates the levee system does not comply with Section 65.10 requirements, FEMA will revise the flood hazard and risk information for this area to reflect de-accreditation of the levee system. To mitigate flood risk in

residual risk areas, property owners and residents are encouraged to consider flood insurance and floodproofing

or other protective measures. For more information on flood insurance, interested parties should visit the FEMA

insurance and floodproofing or other protective measures. For more information on flood insurance, interested

parties should visit the FEMA Website at http://www.fema.gov/business/nfip/index.shtm.

Website at http://www.fema.gov/business/nfip/index.shtm. LIMIT OF MODERATE WAVE ACTION NOTES TO USERS: For some coastal flooding zones the AE Zone category has been divided by a Limit of Moderate Wave Action (LiMWA). The LiMWA represents the approximate landward limit of the 1.5-foot breaking wave. The effects of wave hazards between the VE Zone and the LiMWA (or between the shoreline and the LiMWA for areas where VE Zones are not identified) will be similar to, but less severe than those in the VE Zone.

Limit of Moderate Wave Action (LiMWA)

COASTAL BARRIER RESOURCES SYSTEM (CBRS) NOTE

This map may include approximate boundaries of the CBRS for informational purposes only. Flood insurance is not available within CBRS areas for structures that are newly built or substantially improved on or after the date(s) indicated on the map. For more information see http://www.fws.gov/habitatconservation/coastal_barrier.html, the FIS Report, or call the U.S. Fish and Wildlife Service Customer Service Center at 1-800-344-WILD. **Otherwise Protected Area**

PANEL LOCATOR

NORTH CAROLINA FLOODPLAIN MAPPING PROGRAM NATIONAL FLOOD INSURANCE PROGRAM FLOOD INSURANCE RATE MAP

NORTH CAROLINA

PANEL 8846

Prograi

surance

Flood

National

FEN

Panel Contains:

COMMUNITY ALAMANCE COUNTY ELON, TOWN OF

GUILFORD COUNTY

370001

PANEL SUFFIX 370411 8846

GIBSONVILLE, TOWN OF 370387 8846

370111 8846

FLOOD INSURANCE STUDY

A Report of Flood Hazards in

ALAMANCE COUNTY, NORTH CAROLINA

AND INCORPORATED AREAS

Community Name	Community Number	River Basin
Alamance County (Unincorporated Areas)	370001	Cape Fear
Alamance, Village of	370457	Cape Fear
Burlington, City of	370002	Cape Fear
Elon, Town of	370411	Cape Fear
Gibsonville, Town of	370387	Cape Fear
Graham, City of	370283	Cape Fear
Green Level, Town of	370482	Cape Fear
Haw River, Town of	370003	Cape Fear
Mebane, City of	370390	Cape Fear
Ossipee, Town of	370689	Cape Fear
Swepsonville, Town of	370073	Cape Fear

VOLUME 1 OF 2

September 6, 2006

Federal Emergency Management Agency State of North Carolina

> Flood Insurance Study Number 37001CV001A

www.fema.gov and www.ncfloodmaps.com

Section 4.0 - Area Studied

Table 5—Flooding Sources Studied by Detailed Methods: Redelineated

	Riverine	Sources	Affected		
Source	From	То	Communities		
McAdams Creek	Confluence with East Back Creek (Overflow Path)	Approximately 0.6 mile upstream of confluence of McAdams Creek Tributary	City of Mebane, Alamance County (Unincorporated Areas		
Meadow Creek	Confluence with Haw River	Approximately 110 feet upstream of NC 54	Alamance County (Unincorporated Areas		
Mill Creek	Confluence with Graham- Mebane Lake	Approximately 100 feet upstream of the confluence of Lake Michael Tributary	City of Mebane, Alamance County (Unincorporated Areas		
Otter Creek	Confluence with Graham- Mebane Lake	Approximately 50 feet upstream of Mebane- Rogers Road	Town of Green Level, Alamance County (Unincorporated Areas		
Reedy Fork	Confluence with Haw River	Alamance/Guilford County boundary	Alamance County (Unincorporated Areas), Town of Ossipee		
Rock Creek	Confluence with Stinking Quarter Creek	Mill Road	Alamance County (Unincorporated Areas		
Servis Creek	Confluence with Haw River	Approximately 1,630 feet downstream of Burch Bridge Road	City of Burlington, Alamance County (Unincorporated Areas		
Servis Creek Tributary A	Confluence with Servis Creek	Approximately 150 feet upstream of North Beaumont Avenue	City of Burlington, Alamance County (Unincorporated Areas		
Staley Creek	Confluence with Servis Creek	Approximately 100 feet upstream of Rauhut Street	City of Burlington, Alamance County (Unincorporated Areas		
Stinking Quarter Creek*	Confluence with Big Alamance Creek	Approximately 350 feet upstream of confluence of Rock Creek	Alamance County (Unincorporated Areas		
Stony Creek	Confluence with Haw River	Approximately 1,300 feet upstream of Stoney Creek Church Road	Alamance County (Unincorporated Areas		
Tickle Creek	Confluence with Travis Creek	Approximately 0.5 mile upstream of Gibsonville- Ossipee Road	Alamance County (Unincorporated Areas		
Town Branch	Confluence with Haw River	Approximately 1,050 feet upstream of Interstate 40/85	City of Graham, Alamance County (Unincorporated Areas		
Travis Creek	Confluence with Haw River	Approximately 1,000 feet upstream of confluence of Tributary A to Travis Creek	Alamance County (Unincorporated Areas		
Tributary A to Haw Creek	Confluence with Haw Creek	Approximately 75 feet upstream of Jones Drive	Alamance County (Unincorporated Areas		

Table 7—Summary of Discharges

		Drainage	Discharges (cfs)					
Flooding Source	Location	Area (square miles)	10% Annual Chance	2% Annual Chance	1% Annual Chance	0.2% Annual Chance		
	At mouth	15.7	2,245	4,095	5,155	8,420		
	Below confluence of Tickle Creek	13.2	2,005	3,670	4,620	7,565		
	Above confluence of Tickle Creek	9.0	1,560	2,870	3,625	5,965		
Travis Creek	Above Tributary, approximately 150 feet upstream of State Route 1504 (Elon-Ossipee Road)	6.9	1,300	2,410	3,045	5,030		
	At State Route 1500 (Gibsonville Ossipee Road)	4.0	905	1,690	2,145	3,572		
	At Guilford County boundary	2.3	625	1,180	1,500	2,515		
	At confluence with Travis Creek	2.0	*	*	1,400	*		
Travis Creek Tributary 2	Approximately 1,400 feet downstream of Manning Avenue (SR 1503)	0.6	*	*	761	*		
	At mouth	5.5	1,125	2,090	2,645	4,390		
	At Jones Drive	4.9	1,045	1,945	2,460	4,090		
Tributary A to Travis Creek	Approximately 220 feet upstream of Jones Drive	4.9	*	*	2,320	*		
	Approximately 0.7 mile upstream of Jones Drive	2.6	*	*	1,570	*		
	At mouth	1.5	480	915	1,170	1,970		
	At Guilford County boundary	1.4	455	870	1,110	1,875		

EVATION 3)	WITH INCREASE			575.9 0.2				1	<u> </u>				}							Š				605.1 0.6	
BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD 88)	WITHOUT FLOODWAY FLC		575.52																						
W.	REGULATORY		583.8	583.8	583.8	583.8	583.8	583.8	583.8	585.5	586.9	587.8	589.3	590.2	591.9	593.1	593.8	595.1	595.3	595.7	599.8	601.9	604.5	604.5	2 103
	MEAN VELOCITY (FEET PER SECOND)		2.4	2.7	3.5	3.1	3.0	3.2	4.6	2.9	2.9	2.6	2.1	2.4	2.2	2.9	4.2	1.2	1.9	4.7	2.3	2.7	1.4	2.1	2.2
FLOODWAY	SECTION AREA (SQUARE FEET)		2,111	1,875	1,476	1,659	1,712	1,585	1,112	1,668	1,643	1,854	2,249	1,537	1,668	1,246	854	2,634	1,581	652	1,299	1,132	1,672	1,123	1 000
	WIDTH (FEET)		200	180	120	170	180	150	75	140	160	160	200	165	165	140	95	270	210	130	150	180	235	190	160
RCE	DISTANCE		120	850	1,020	1,650	2,825	5,110	5,770	6,150	7,610	8,310	9,910	11,140	12,770	13,900	14,320	14,880	15,580	16,030	17,790	19,430	21,030	21,085	21 250
FLOODING SOURCE	CROSS SECTION	Travis Creek	001	600	010	017	028	051	058	062	920	083	660	111	128	139	143	149	156	160	178	194	210	211	213

1Feet above mouth

²Elevation computed without consideration of backwater effects from Haw River

FEDERAL EMERGENCY MANAGEMENT AGENCY

FLOODWAY DATA

TRAVIS CREEK

TABLE 13

AND INCORPORATED AREAS

ALAMANCE COUNTY, NC

FLOODING SOURCE	₹CE		FLOODWAY		W	BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD 88)	E ELEVATION	
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH	INCREASE
Travis Creek (continued) 218	21,7501	160	950	2.5	605.6	605.6	606.4	a
224	22,4401	140	899	3.5	607.7	607.7	608.4	0.7
232	23,2451	120	1,124	2.0	614.9	614.9	615.2	0.3
253	25,3401	200	1,528	1.4	615.8	615.8	616.4	9.0
261	26,0701	250	1,574	1.0	616.0	616.0	616.8	0.8
268	26,8401	200	955	1.6	616.5	616.5	617.2	0.7
Tributary A to Haw Creek	1001	140	PED		. 00	r 7		,
016	1.6001	105	595	1. 4	532.7	532.7	533 5	0.00
036	3,6001	105	525	5.0	543.2	543.2	543.3	0.0
039	3,9001	130	735	3.6	544.5	544.5	545.1	9.0
045	4,5161	170	1,450	1.7	551.1	551.1	551.6	0.5
Tributary A to Travis Creek	1001		· c	· ·				
013	1.2701	051	328	0, 6	618.0	613.95	613.9	0.0
015	1,4701	20	221	5.0	620.1	620.1	620.4	0.3
Tributary to Travis Creek 010	1,019²	1053	612	2.9	607.2	607.2	608.2	1.0
011	1,1112	185	1,394	1.3	610.9	610.9	611.9	1.0
024	Z,39U-	00	1441	0.4	613.1	613.1	614.0	6.0

¹Feet above mouth ²Feet above confluence with Travis Creek

⁴Elevation computed without consideration of backwater effects from Haw Creek ⁵Elevation computed without consideration of backwater effects from Travis Creek

³Value is inaccurate, as floodway has been adjusted in this area to match topographic-based Redelineation

FLOODWAY DATA

ALAMANCE COUNTY, NC AND INCORPORATED AREAS

FEDERAL EMERGENCY MANAGEMENT AGENCY

TRIBUTARY A TO TRAVIS CREEK - TRIBUTARY TO TRAVIS CREEK TRAVIS CREEK - TRIBUTARY A TO HAW CREEK -

TABLE 13

	TRAVISFW_DUP	
经数据分类的 医克克氏性 医克克氏性 医克克氏性 医克克氏性 医克克氏性 医克克氏性 医克克氏性 医克克氏征		
* HEC-2 WATER SURFACE PROFILES * FNGTNFFRS *	* U.S. ARMY CORPS OF	CORPS OF
**	* HYDROLOGIC	
ENGINEERING CENTER " * Version 4.6.2; May 1991 *	* 609 SECOND STREET,) STREET,
	* DAVIS, CALIFORNIA	IFORNIA
95616-4687 * * * * * * * * * * * * * * * * * * *	(910)	(3)
######################################	(916)	(OT,
2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2		

XXXXX

> 17:39:37 03NOV14 PAGE

THIS RUN EXECUTED 03NOV14 17:39:37

Version 4.6.2; May 1991 HEC-2 WATER SURFACE PROFILES

ALAMANCE CO, NC BLW FPMS BR FIA STUDY TRAVIS CR 100 YR NATURAL TRAVIS CR

ITRACE 6 CHNIM 575.7 WSEL IBW 0 HVINS ALLDC METRIC Z XSECH STRT XSECV IDIR PRFVS NIN IPLOT JNO ICHECK NPROF 32

-

15

33 VARIABLE CODES FOR SUMMARY PRINTOUT

П				570	554.2	554.7	576.0						571.3	566.0	560.4	592.7	1372		575.4	558.3	566.5	585.1	
38		16520		1260	1450	1522	1585	1935		8420			1300	1715	1837	1975			1300	1445	1478	1656	
43 200		12200		575	557.5	554.4	573.5	290		4100		230	573.1	568.3	9.955	591.0	9.1	730	578.5	563.9	563.7	583.8	
5		10340	w (NEF) **	1220	1430	1512	1560	1850		2245		270	1200	1700	1825	1925	9.1	730	1200	1434	1472	1639	c
41 4	4.	13250	NON-EFF FLOW (NEF) **	580	569.1	555.3	572.0	585		5150		330	576.9	568.6	555.9	583.0	9.1	730	584.3	566.9	557.2	580.2	i i
42 54	.2	13250	Y SEC "AA"; 1548	1175	1395	1502	1548	1755		5150	1850	1840	1100	1600	1812	1900	9.1	1478	1100	1400	1463	1600	
3 22	90.	13250	HAW R , MOD BY 1430	585	9.695	554.0	570.6	581.5	90.	5150	1650	SEC ATC-1 1806	580.6	572.1	556.2	571.1	9.1	ATC-2 ** 1445	588.0	567.4	557.3	579.0	
21	.12	13250	TOPO SEC ON HA	1120	1370	1472	1542	1660	.11	5150	3.11	** SURVEY 20	1000	1500	1806	1875	9.1	** SEC AT 24	1000	1370	1451	1519	
38 53	.12	7	** TO 274870	290	569.7	554.1	557.3	579	60.	7		120	585.3	572.5	562.4	563.8		850	591.0	569.1	557.1	570.4	
	NC	QT	X	GR	1345 GR	GR GR	1552 GR	GR	NC	QT	ET	×1	GR	1400 1600	GR	1840 GR 2000	ET 1552	x1	GR	GR 1447	GR 1500	1700	H

		1878		576.7	569.1	570.4	585.1		558.0	1878			577.4	580	574.9	2120		575	558.0	578.6			
	2033			576.7	1803	1943	2136		3.24				577.4	1800	578.1			1820	1904	2050			
	597.5		85		575.4	558.0	583.8		1050		26				1878	578.6		578.3	267.0	575			59
_DUP	2000		FM ATC-2 ** 85		1780	1932	2119		3.0		26			585		2100	290	1800	1894	1998	2365		59
TRAVISFW_DUP	595.0	9.1	OVBKS 85		578.5	558.0	580.2		11	9.11	26	577.4		1710	577.4		2365	280	567.2	570.0	290		59
	1900	9.1	RD; SEC ATC-3; 1998		1680	1904	2080			9.11	FM TOPO ** 1998	574.9			1878	577.4		1710	1885	1982	2295	2000	FM ATC-3 ** 1958
	591.6	9.1	OSSIPEE RI 1878		584.3	267.0	579.0		2.5	9.11	; OVBKS FM 1878	Н		290		1998	585	585	570	570.0	585	1880	CHAN 1925
17:39:37	1800	9.1	** SR 1593 16		1580	1878	1998	2280	1.60	9.11	** SR 1593 18			1610	578.3	574.8	2295	1610	1878	1943	2120	3.11	** TOPO SEC; 19
NOV14 2	587.6		935	10	588.0	567.5	570.4	587.6	1.0		961		10	12	1820	578.1		290	571.4	558.0	280		1020
03NOV14 PAGE 2	GR	ET	x1	X3	GR	1650 GR	1304 GR	GR	SB	556.U	1998 X1	x2	×3	ВТ	BT	BT BT	BT	GR	GR 1022	1932 GR 2100	GR	E	X

Page 3

270	558.1	570					565.1	570.8	577.6	599.3				581.1	562.9	583.4					574	572.0	585
1865	1927	1980	2365				1112	1148	1365	1900				1300	1586	1635					1545	1614	1720
575	559.3	2.995	290			630	568.7	267.0	574.9	596.2			1175	584.9	564.2	570.7				1717	575	567.5	580
.DUP 1800	1925	1958	2295			630	1100	1145	1300	1800			1175	1200	1585	1624				1715	1500	1603	1670
TRAVISFW_DUP 580	564.9	564.7	585			630	572.2	560.1	571.5	588.7			1175	590.4	569.1	570.8				1715	580	9.995	575 Page 4
1710	1914	1952	2120		1278	1148	1040	1134	1209	1700		1640	1619	1100	1580	1619	1800		1695	5 ** 1619	1485	1586	1635
585	566.9	558.2	580	90.	1108	WITH NEF 1118	6.065	560.3	2.695	582.8	90.	1460	** 1585	594.5	571.3	568.3	596.4		1525	CHAN FM ATC-5 1585	585	567.9	574.4
1610	1894	1943	2050	.12	3.11	** ATC-4 20	1000	1120	1200	1600	.11	3.11	** ATC-5	1000	1500	1614	1700	17:39:37	3.11	** TOPO; 16	1010	1585	1624
290	567.2	558.3	575	.10		1650	599.4	9.095	569.1	579.6	.11		2825	598.6	571.7	563.8	587.0	03NOV14		4540	290	572.8	574.5
GR	GR GR	GR	GR	N	ET	X1	GR	GR	GR	1500 GR 1950	NC	ET	x1	GR	1400 GR	1603 GR	16/2 GR	1 03 PAGE	E	X	GR	1580 GR	GR

1775

590

1740 GR

		580	568.6	290				2035		583.6	569.5	569.0	590.9				586.0	583.6	569.5	569.0	590.9	
		1340	1603	1740			8275			1800	2037	2090	2300				586.0	1800	2050	2090	2300	
	270	585	2.795	585			4025	9.1	099	586.2	569.5	569.9	290			40		586.2	576.7	6.695	290	
	570	1300	1586	1685			2200	9.1	099	1715	2035	2080	2200			40		1715	2035	2080	2200	
	570	290	269.0	580			2065	9.1	099	290	577.2	570.0	585.1			40		290	577.2	570.0	585.1	
1625	.5 ** 1619	1240	1585	1640			2905	9.1	NEF ** 2110	1615	2000	2070	2110	2600	2094	2093		1615	2000	2070	2110	2600
1475	CHAN FM ATC-5 ** 1585 1619	265	573.9	575		90.	2905	9.1	, MOD FOR NE 2035	595.0	575.4	9.075	6.925	597.1	2049	, SEC ATC-7 2050		595.0	575.4	570.6	576.9	597.1
3.11	** TOPO; 16	1210	1455	1619	1900	.10	2905	9.1	** ATC-6 22	1555	1900	2060	2100	2500	3.11	** NC 87 22		1555	1900	2060	2093	2500
	5110	009	575	573.1	594	.10	7		5770	0.009	579.0	570.5	569.8	595.4		5810	10	009	579.0	570.5	2.925	595.4
ET	X1	GR	1410 GR	LO14 GR	L/93 GR	NC	QT	ET 2110	x1 x1	GR	L8/U GR	2030 GR	2093 GR	2400 GR	ET	X1	X3	GR	L8/U GR	2050 GR	2093 GR	2400 GR

567.7				586.3	586.5	580.7	2260	009	576.0	569.9	585				1990		582.2	569.3	585				582.2	570.1
0				586.3	1905	586.0		2510	1950	2080	2170	2510		7790			1850	2068	2170	2510			1850	2068
520		22				2050	586.3		582.2	570.0	280	009		3780	9.1	63	591.7	569.4	280	009		220	591.7	570.2
3.0		57			591.7		2200	295	1905	2070	2150	2395		2070	9.1	33	1750	2058	2150	2395		220	1750	2058
TRAVISFW_DUP 43		57	586.0		1850	586.0		2395	586.5	9.029	576.3	595		4760	9.1	% %	599.5	570.2	576.3	595		220	599.5	571.0 Page 6
	2094	2093	580.7			2050	586.0		1850	2060	2093	2315		4760	2135	FOR NEF ROB ** 2081	1650	2055	2085	2315	2155	ROB ** 2081	1650	2055
2.5	2049	2050	П		599.5		2093	290	591.7	570.5	575.2	290		4760	2025	TRSF & MOD F 2055	603.5	573.9	575.0	290	2015	MOD FOR NEF 2055	603.5	574.7
1.62	3.11	19			1750	586.1	580.7	2315	1750	2050	2093	2260	17:39:37	4760	3.11	** ATC-8 -	1590	2050	2081	2260	3.11	** ATC-8 N	1590	2050
1.25		2867		10	13	2000	586.0		599.5	569.5	9.695	586.8	03NOV14 4	7		5930	0.709	576.0	572.3	586.8		6150	0.709	576.0
SB	267.U	×1×	x2	×3	ВТ	BT	2093 BT	586.8 BT	GR	2050 GR	2090 GR	2230 GR	1 031 PAGE	TO	ET	2155 X1	GR Gr	GR	2078 GR	GR GR	ET	X1	GR	GR

Ф
3
ĬĹ.
S
Η
>
\forall
α

	585					572.2	594.7					576.5	576.6	602.9	1138		585	571.5	588.4				585.0	585
	2170	2510				1257	1300					1147	1190	1400			975	1172	1225				585.0	975
	280	009			1460	577.4	580.3				200	585.5	576.5	597.1		FM ATC-10** 190	290	572.3	585			20		290
UP	2150	2395			1460	1200	1285				200	1100	1188	1320	9.1	CHAN 190	955	1166	1200	1600		20		955
TRAVISFW_DUP	576.3	595			ER ELEV LOB ** 1460	577.6	2.925				200	595.2	572.3	589.6		OF ROB FM RDWAY; 190	595	576.5	580	604.5		20		595 Page 7
	2085	2315		1330	AT HIGHER 1285	1100	1283	1600		1305	1190	1069	1180	1300	1255	PORTIONS 1190	925	1085	1190	1500	1240	1206		925
	575.0	290	90.	1170	, MOD FOR NEF 1257	599.4	572.2	611.3	90.	1145	** 1166	601.0	571.5	583.8	1015	SEC;NEF LOB & 1166	009	578	576.5	600.2	1000	E RD ** 1161		009
	2081	2260	.10	3.11	** ATC-9 12	1020	1271	1500	.11	3.11	** ATC-10 15	1000	1172	1278	3.11	** TOPO S 18	875	1060	1188	1400	3.11	** PRIVATE 18		875
	573.1	586.8	60.		7610	610	572.2	9.509	.12		8310	8.709	572.3	577.6		8500	909	580	572.3	594.6		8550	10	909
2078	GR	GR GR	NC	ET	X	GR	1239 GR	GR GR	N	ET	X1	GR	GR	1200 GR 1500	1218	1210 X1	GR	1000 GR	GR	GR	ET	X1	x3	GR

	571.6	588.4			571.6				587.9	595.4		1206	600.2		585	571.6	588.4			1125		585	571.6	588.4	
	1165	1225			0.37				587.7	863	587.5	586.5	1500		885	1165	1225					885	1172	1225	
	576.5	585			209		19				1100	587.9			290	576.5	585				41	290	572.4	585	
DUP	1161	1206	1600		4.8		** 19			009		1206	594.6		863	1161	1206	1600		9.1	41	863	1166	1200	1600
TRAVISFW_DUP	576.7	581.0	604.5		34		B FM ROADWAY ** 19	587.7		835	587.8	586.4	1400		595.4	576.7	581.0	604.5			41	595.4	9.925	580	604.5 Page 8
	1085	1203	1500			1230	PORTIONS OF ROB 1206	586.5			1000	587.7			835	1005	1203	1500		1220	1190	835	1005	1190	1500
	578	580.3	600.2		2.5	086	NEF; 1161	Н		909		1161	588.4		009	578	580.3	600.2	90.	096	1166	009	578	576.6	600.2
	1060	1200	1400	17:39:37	1.47	3.11	** TOPO WITH 18			785	592.5		1300	604.5	785	086	1200	1400	.10	3.11	18	785	086	1188	1400
	580	571.6	594.6	03NOV14 5	1.1		8569		10	14	006	587.7		1600	909	580	571.6	594.6	.10		8610	909	580	572.4	594.6
	1000 GR	GR 1200	GR	1 03r PAGE	SB 571.6	ET	X1	x2	×3	ВТ	BT	BT	967.9 BT	ВТ	GR	GR GR	GR	GR	NC	ET	x1 x1	GR	915 GR	GR	GR

			594.0	574.5	578.7					579.9	580						591.0	8.929	8.909		
			1300	1618	1657	1850	7565			1500	1650	1950		2962			1359	1529	1600		
		1300	598.3	579.0	580.7	608.3	3670		490	585	8.625	009		2870		740	596.2	577.0	594.4		
		1300	1200	1600	1650	1800	2000		490	1455	1648	1870		1560		740	1300	1527	1555		
		1300	601.8	580.1	578.9	9.865	4620		490	290	575.4	595		3625		ELEV LOB ** 740	601.1	581.3	581.4		
	1720	1650	1100	1534	1648	1758	4620	1695	1650	1410	1634	1760		3625	1580	E AT HIGHER 1548	1245	1500	1548		
90.	1520	** 1618	8.909	581.6	574.5	588.5	4620	1515	1618	595	575.4	290	90.	3625	1415	MOD FOR NEF 1527	909	581.2	580.4		
.11	3.11	** ATC-12 **	1000	1500	1634	1730	4620	3.11	** TOPO ** 14	1375	1621	1710	.10	3625	3.11	** ATC-13, 16	1150	1462	1546	1800	17:39:37
60.		9910	612.9	585.8	574.5	579.1	7		10400	009	575.4	585.0	.10	7		11140	610	581.3	576.7	613.1	1 03NOV14 PAGE 6
NC	ET	X	GR	1400 GR	LDZ1 GR	GR	QT	ET	X1	GR	GR	LOSU	ON N	QT	ET	×	GR	GR 1520	1200	L/UU GR	1 03 PAGE

Page 9

1350

1185

3.11

ET

	2	1	∞				0	2	0			1		2	0	5		0		1	~	**	6.	
	583.5	583.1	8.609.8				590	580.5	009			1641		599.2	582.0	602.6		1660		595.1	8.009	586.3	595.2	
	1182	1225	1500				1055	1219	1335		5870			1300	1680	1900	2400			595.1	1300	1660	1725	
1630	584.4	578.5	604.1			1130	262	581.3	595		2825	9.1	420	604.7	581.6	601.1	615.1		45		604.7	586.3	590.1	
1630	1135	1219	1400			1130	1010	1210	1295		1530	9.1	420	1200	1678	1758	2300		45		1200	1600	1721	10
1630	599.6	579.3	596.9			1130	009	580.9	290		3565	9.1	420	608.1	586.1	595.2	611.3	9.11	45		608.1	586.4	589.5	01 0000
1230	1100	1210	1340		1270	FM ATC-14 ** 1230	096	1208	1260	1620	3565	9.1	ATC-14 ** 1700	1100	1600	1700	2200	9.11	SEC ATC-16 ** 1660 1725		1100	1489	1713	
4 ** 1208	602.8	578.9	583.7	90.	1130	WITH CHAN 1208	909	585.4	586	610	3565	9.1	5; CHAN FM 1678	610.9	586.4	586.0	9.909	9.11			6.019	594.7	581.3	
** ATC-14	1000	1208	1300	.10	3.11	** TOPO WITH 17	006	1172	1230	1550	3565	9.1	** ATC-15; 19	1000	1489	1695	2100	9.11	** SR 1504; 22		1000	1400	1674	
12770	611.6	583.4	583.6	.11		13900	019	586	585.1	909	7		14320	617.0	594.7	581.2	604.3		14365	10	617.0	599.2	581.3	
X1	GR 1200 GR 1230 GR 1600			NC	ET	x1	GR 11105 GR 1225 GR 1400 GR				QT	QI ET 1736 X1			GR 1400 GR 1689 GR 2000 GR			ET 1725 X1		X3	GR 1372 GR 1668 GR 1758			

Page 10

9.909		581.3	1660			595.1	608.2		1660	595.7			009	586.3	586.7			1627		009	581.9	290	
2100		1.04				595.1	1200	596.2		1768	603.8		1295	1623	1717	2220				1295	1675	1725	
604.3		639		21				1520	595.2		2100	615.1	909	586.4	586.3	909		9.1	20	909	585.4	586.7	
^_buP_2000		1.44		21			612.2		1660	595.2		2400	1200	1590	1713	2000		9.1	20	1200	1623	1707	2220
TRAVISFW_DUP 602.6		39	9.11	NEF ** 21	595.1		1100	009		1725	601.5		608.1	290	581.3	009		9.1	20	608.1	586.6	586.3	909
1900	2400		9.11	TOPO, WITH 1725	593.8			1450	595.1	593.7	2000	611.3	1100	1545	1674	1910		1735	1707	1100	1590	1701	2000
601.1	615.1	2.7	9.11	OVBKS FM 1660	Н		617.0		1600	595.2		2300	610.9	265	581.3	262		1635	CHAN FM 17 ** 1675	610.9	290	581.5	009
1768	2300	1.44	9.11	** SR 1504; 19			1000	909		1725	599.2		1000	1520	1668	1800	17:39:37	3.11	** TOPO; 0	1000	1545	1690	1910
-	611.3	0.95		14385		10	19	1295	595.2	593.8	1900	605.9	617	596.2	586.3	290	03NOV14 7		14435	617	595	581.9	595
GR 2200	GR	SB	1725	x1	x2	×3	ВТ	BT	BT	393.2 BT	BT	2200 BT	GR	1450 1660	GR 1775	GR	1 03 PAGE	ET 1773	x1 ×1	GR	GR 1680	GR	GR

				608.1	582.6	586.8	605.5	618.7			262	584.2	909				594.4	585.9	610.1				618.8	589.5
	5030			1077	1366	1400	1900	2400			1315	1381	1625				1300	1451	1520				1200	1289
	2410		445	610.5	586.1	586.8	608.3	616.2		200	009	584.6	009			450	605.9	586.0	602.3			1760	619.5	589.8
DUP	1300		445	1053	1300	1398	1800	2300		550	1300	1371	1580			450	1200	1445	1508	1750		1760	1152	1277
TRAVISFW_DUP	3045		445	9.809	589.5	587.0	6.765	611.6		** 700	909	584.6	595			450	611.9	585.5	597.6	620.1		1760	622.3	589.5 Page 12
	3045	1570	1398	1040	1280	1392	1700	2200	1555	SEC ATC-17 1398	1285	1366	1520		1497	1464	1100	1442	1500	1700	1415	1300	1100	1275
90.	3045	1300	1366	612.9	591.4	582.2	593.6	608.2	1345	SEC; CHAN FM 1366	610	588.1	290	90°	1367	** 1442	617.3	589.3	597.3	618.5	1265	** 1275	622.4	593.1
60.	3045	3.11	** ATC-17 25	1000	1121	1381	1600	2100	3.11	** TOPO S 15	1240	1350	1398	.10	3.11	** ATC-18 18	1000	1429	1464	1600	3.11	** ATC-19 21	1000	1265
.11	7		14880	614.2	608.5	582.6	588.2	6.909		15580	615	290	589.0	.10		16030	621.3	589.8	589.1	611.5		17790	626.1	593.8
NC	QT	ET	X	GR 2007	1271 GR	GR GR	GR	2450	ET	X1	GR	1335 GR 1365	1392 GR 1780	NC	ET	X1	GR 1400	1400 GR	GR GR	GR	ET	X1	GR	GR

	603.4	617.0					909	591.1	605.7					909	593.7	615						909	594.9	
	1447	1800					1895	2070	2200					1890	2080	2330		4810				1580	2080	
	593.1	614.9				1640	610	591.8	600.2				800	610	592.8	610		2300			740	610	594.0	
_DUP	1400	1700				1640	1570	2067	2100	2600			800	1740	2070	2275		1240			740	1490	2070	
TRAVISFW_DUP	593.2	612.3				1640	615	595.6	597.0	622.8			800	615	593.5	909		2910			009	615	594.7	Page 13
	1317	1600			2210	NEF LOB ** 2096	1370	2053	2096	2500		2220	ATC-20 ** 2096	1320	2067	2230	2440	2910		2145	FM ATC-20 ** 2096	1075	2067	
	593.4	610.2		90.	2030	MOD FOR 2067	620	296	595.8	618.1		2050	SEC; CHAN FM 2067	620	597.3	009	625	2910	90.	1885	SEC; CHAN FM 2067	620	598.5	
	1300	1565	1990	.11	3.11	** ATC-20, 18	1245	2020	2002	2400	17:39:37	3.11	** TOPO S 17	1210	2050	2096	2400	2910	.11	3.11	** TOPO SI 17	096	1940	
	592.0	9.609	620.4	60.		19430	625	009	592.0	612.3	03NOV14 8		20230	625	009	597.5	620	7	.10		20970	625	009	
1200	GR 1500	1900 1900	GR	NC	ET	X1	GR	LYOU GR	2000 GR	2300 GR	1 03 PAGE	ET	×1	GR	GR	GR	GR	QT	NC	ET	×1	GR 1700	GR 7097	0

615			1398				009	597.1	595.7	610		1398				009	605.9	602.8					8.009	601.0	
2235		3880	90.				1005	1305	1388	1450		90.				1005	1305	1396	1525				1000	1346	
610		1840	1374			09	909	595.1	594.7	909		1370			10T CHG** 165	909	6.009	599.4	615			10	909	599.7	
_buP 2195		066	.10			150	882	1300	1376	1425		.10			ON NEW CHAN; STA NOT 45	885	1300	1388	1480			** 10	885	1300	-
TRAVISFW_DUP 605		2335	1306			AND NEF ROB **	610	594.1	595.7	009		1306				610	599.9	598.4	610			CHAN FM 20-A **	610	598.0	Page 14
2155	2350	2335	90.		1413	SEC 20-A 1398	795	1295	1374	1405		90.		1425	21030; XLCH BASED 1398	795	1295	1372	1450		1350	BY 20A ROB; 1348	780	1255	
009	625	2335	1294		1178	SEC, MOD BY 1374	615	595.1	599.3	009		1294		1200	OVBKS FM 1370	615	6.009	599.4	909	90.	1160	OVBKS MOD B 1253	615	599.3	
2096	2300	2335	.10		3.11	** TOPO 9	385	1294	1346	1398	1525	.10		3.11	** TOPO W/ 19	385	1294	1370	1425	.11	3.11	** TOPO; 14	340	1253	
5.865	620	7	2	1525		21030	620	0.965	599.7	599.0	615	2	1525		21075	620	601.8	603.1	009	.10		21085	620	601.3	
GR	2260 GR	QT	Ξ,	- I	ET	X1	GR	1245 GR 1306	1200 GR 1206	1390 GR	L400 GR	X,	TT.	ET	X	GR	1245 GR 1206	1200 1200	GR	NC	ET	X1	GR	1200 GR 1348) - -

				8.009	601.0				8.009	599.1	620.9			610.1	2.009	602.4	621.4					604.7
1485				1100	1346				1100	1300	1500			1300	1600	1677	1900					1530
620			135	603.7	599.7			20	603.7	598.0	617.3		480	618.1	601.5	600.7	619.7				, 690	613.3
JUP 1425			135	1000	1300	1550		20	1000	1293	1400		480	1200	1576	1674	1826	2300			; NEF LOB ** 690	1435
TRAVISFW_DUP 615			135	6.809	0.865	650.9		20	6.809	5.665	604.8		480	621.0	603.2	599.1	610.3	629.6			& CHAN FM 21; 690	618.5 Page 15
1385		1360	ON LOB ** 1348	850	1255	1500	1360	1 SEC 21 ** 1313	850	1288	1348	1755	1677	1100	1540	1664	1800	2200		1742	23;NR OVBK & CHAN FM 1677 690	1350
610		1200	20-A EXTENDED 1253	615	599.3	617.3	1210	20-A W/CHAN FM 1288	615	2.009	601.0	1595	** 1652	623.4	604.9	598.0	604.5	624.0	90.	1602). BASED ON 1652	622.0
1365	17:39:37	3.11	** SEC 20 13	200	1253	1400	3.11	** SEC 20 15	200	1253	1313	3.11	** SEC 21 23	1000	1500	1657	1785	2100	.10	3.11	** TOPO,ADJ.	1245
909	03NOV14 9		21250	620	601.3	604.8		21270	620	601.3	2.009		21750	625.5	605.9	599.5	602.6	620.8	.10		22440	628.5
GR	1 0 PAGE	ET	×1×	GR OCC	1200 GR	L340 GR	E	×1	GR	1200 GR	1510 GR 1550	ET	X	GR 1400	1400 GR	1002 GR	1700 GR	GR	NC	Е	X ₁	GR

	603.9	622.5	
	1674	1830	
	602.3	618.0	
DUP	1664		
TRAVISFW_	601.2	614.0	
	1657	1765	
	602.7	8.509	
	1652	1700	1920
	603.9	9.509	627.5
	L600 GR	GR	GR GR

604.6	1679			615.5	627.8		1679	616.6			623.4	606.5	612.6	629.4		1635		623.4	605.9	612.6			0.1	
0				615.2	1200	620.4		1800	8.929		1300	1648	1755	2100				1300	1682	1755	2200			3570
189		41				1500	615.2		2000		624.0	8.909	6.909	625.6		9.1	44	624.0	9.909	6.909	629.4		06	1690
-w_DUP		41			631.7		1679	615.5			1200	1600	1707	2000		9.1	44	1200	1648	1707	2100		06	902
TRAVISFW_DUP 28	9.11	41	615.2		1100	623.4		1707	621.7		627.8	614.1	606.5	626.8		9.1	44	627.8	8.909	9.909	625.6		06	2145
	9.11	FM SEC 23 ** 1707	611.6			1400	615.5	611.6	1900	629.4	1100	1575	1707	1900		9.1	21 ** 1707	1100	1600	1704	2000	1790	SFERRED **	2145
2.7	9.11	0VBKS 1679	Н		9.989		1600	615.5		2200	631.7	615.9	604.6	621.7	90.	9.1	0VBK FM 1682	631.7	614.1	605.5	626.8	1610	** PREVIOUS SEC TRANSFERRED **	2145
1.57	9.11	** SR 1500; 20			1000	624.0		1707	617.8		1000	1500	1679	1857	.11	9.1	** SEC 23;	1000	1500	1694	1900	3.11	** PREVIOL	2145
1.25		23201		10	18	1300	612.9	611.6	1857	625.6	9.989	620.4	604.6	617.8	Η.		23245	9.989	620.4	604.4	621.7		23335	7
SB	604.7 1707	1/0/ X1	x2	×3	ВТ	BT	BT 27.5	2.CL0 BT	BT 0100	BT	GR	GR 1670	GR 1800	1800 GR 2200	NC	ET	x1 x1	GR	GR GR	1687 GR	GR	ET	×	QT

	620.0	0.709	6.609							625.9	611.0	610.7	635						620	610.1	625	
	1300	1767	1900	2300		2635				1200	1600	1658	2055			2520			1285	1650	1795	
2005	625.5	2.909	2.609	644.3		1235			730	632.5	612.3	610.1	630			1180		SEC 25** 770	625	610.2	620	
2005	1200	1764	1800	2200		655			640	1120	1520	1654	1990			625		ROB; CHAN FM 770	1200	1645	1760	
2005	631.0	610.1	2.609	634.5		1570			30B ** 730	636.3	616.9	0.809	625			1500		ELEVS TAKEN FM SEC 25 RV 1658 600	632	8.609	615	
1785	1100	1730	1785	2115		1570	1850		HIGHER ELEV ROB ** 1658 7	1100	1500	1650	1900			1500	1730		1100	1642	1750	2070
24 WITH NEF * 1764	637.0	610.9	6.609	625	90.	1570	1600		, NEF AT H: 1642	637.7	618.3	608.1	613.8		90.	1500	1530	WITH HIGHER 1642	637.7	613.1	614	635
** SEC 24 19	1000	1540	1778	2050	.11	1570	3.11	17:39:37	** SEC 25 21	1000	1400	1645	1800	2215	.10	1500	3.11	** TOPO, W	950	1490	1658	1910
25340	640.9	615	607.3	615	.10	7		03NOV14 11	26070	640.6	620.8	2.709	612.0	640	60.	7		26840	640.6	615	612.2	630
X1	GR	GR 1777	GR GR	2000 GR	NC	QT	ET	1 03 PAGE	X1	GR	1300 GR	1042 GR	1/00 GR	2150 GR	NC	QT	ET	X1	GR	1400 GR	1034 GR	L635 GR

TRAVISFW_DUP

1945

1745

3.11

П

		615	614.0	635			625.4	613.7			L-BANK ELEV R-BANK ELEV SSTA ENDST		569.10 570.60 1254.40 1607.00			
		1270	1364	1605			1271	1358	1539		OLOSS L TWA R ELMIN S TOPWID E		.00 5 .0 5 554.00 12 352.60 16		7.	
	930	620	613.3	630		180	629.7	613.3	643.3		HL VOL WTN CORAR		00000		1585. 1607 .1	24.2 1.1
	930	1200	1358	1535		180	1200	1353	1500		HV AROB XNR ICONT		(NEF) ** .42 150.8 .120	70	1560.	73.
	**	625	612.9	625		180	630.3	613.4	635.4		EG ACH XNCH IDC		FF FLOW 576.12 2249.2 .060	EL= 575.70	48.	52.8 4 1.1 1.4.4
1427	FM SEC 26 *1371	1000	1353	1460	1400	1371	1100	1349	1400		WSELK ALOB XNL ITRIAL		"AA"; 575, 793	CWSEL≔	7	222.3 2249.2 1.4 5.4 6.4 19.1
1327	1353 CHAN F	630	0.	620	1330	153	6.	0.	∞.		CRIWS QROB VROB XLOBR		MOD BY SEC .00 129.2 .86	4870.00	1395	151.3 22 1.3 6.1
11 13	торо, WITH N 15		9 613			C-26 ** 13	0 631	5 615	1 618	:37	CWSEL QCH VCH XLCH		.400 N HAW R , 575.70 12175.1 5.41	SECNO= 27	. 1.5	146.3 1 1.3 5.9
3.1	*	006	1349	1430	3.11	** ATC. 14	1000	133	137	17:39:	DEPTH QLOB VLOB XLOBL		.200 CEHV= 274870.000 ** TOPO SEC ON 50.0 21.70 50.0 945.7 .00 1.19	SUTION FOR	1.8	274.0 3.0
	27770	635	614.6	1 615 5		27950	638.8	616.9	614.4	03NOV14 E 12	SECNO Q TIME SLOPE	*PROF 1	CCHV= .2 *SECNO 27487 274870.000 13250.0 .001074	FLOW DISTRIBUTION	1254	H = =
ET	X1	GR	1330 GR	15/1 GR 1635	Н	X1	GR	1200 GR	LSO	1 PAGE		*PI	CCI * \$ SI	FL(STA= PFI	

*SECNO 120.000

9
힉
Ξ̈́
IS
¥
TR

		.00														
		5.	3.9	221.7	6.	0.8				ELEV						
562.40 560.40 1215.33 1910.96			12.3	497.6	1.3	14.2				L-BANK R-BANK SSTA ENDST		563.90 563.70 1372.00 1552.00				
.07 3.7 555.90 695.63			33.9	8.659	2.6	19.4				OLOSS TWA ELMIN TOPWID	00	.06 11.0 557.10 180.00				00
24.7 .000 .000			1.8	72.7	1.3	12.1		.53		HL VOL WTN CORAR	180.0	.32 76.6 .000		.52.		120.000
.05 747.9 .110 0	2		17.6	779.2	1.2	9.2		KRATIO =		HV AROB XNR ICONT	TARGET=	.21 550.4 .110	4	2.9 144.9 1.0 4.4		TARGET=
576.36 659.8 .060			2.4	118.0	1.1	7.9				EG ACH XNCH IDC		76.75 608.6 .060 0	576.	500. 4.9 153.8 1.6 8.1		⊢
.00 2958.2 .090 2	CWSEL=		10.1	596.8	6.	0.9		ACCEPTABLE		۷ ۲		00 .7	CWSEL=	1478. 10.1 251.8 2.1 2.1 11.4		1998.0 TYPE=
	00.		5.2	401.8	.7	4.0				10 ~	0	.00 21.9 1.67 730.	00.	54.5 54.5 608.6 4.6 18.4		
6.32 47.1 2.65 230.	=	1400.			77	4						** 54 51 51 0.	85	122.6 122.6 11.1		5= 1878.0
42 . 7 36).		1300.	5.		4.	.6		CONVEYANCE	17:39:37	EPTH CV LOB QC LOB VC LOBL XI	STAT	* SEC .44 1.0 .10 30.	ON FOR SECP	1400		NT STATIONS=
120.000 5150.0 05 .000259	FLOW DISTRIBUTION	STA= 1215.	=0 ~	AREA=	78.0 VEL=	DEРТН= 1 6	*SECNO 850.000	3302 WARNING:	1 03NOV14 PAGE 13	SECNO DI Q QI TIME VI SLOPE XI	FNCROAC	0.000 150.0 111 000919	FLOW DISTRIBUTION	STA= 1372. PER Q= 233. AREA= 233. VEL= 1. DEPTH= 8.		3470 ENCROACHMENT
	20.42 576.32 .00 .00 576.36 .05 .17 2558.7 1747.1 844.2 2958.2 659.8 747.9 24.7 .86 2.65 1.13 .090 .060 .110 .000 555 330. 230. 270. 2	0.000 20.42 576.32 .00 .00 576.36 .05 .17 .07 .07 .150.0 2558.7 1747.1 844.2 2958.2 659.8 747.9 24.7 3.7 .07 .05 .05 .05 .05 .07 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	20.000 20.42 576.32 .00 .00 576.36 .05 .17 .07 562.40 5150.0 2558.7 1747.1 844.2 2958.2 659.8 747.9 24.7 3.7 560.40 5150.0 2558.7 1747.1 844.2 2958.2 659.8 747.9 24.7 3.7 560.40 3150.0 2558.7 1747.1 844.2 2958.2 659.8 747.9 24.7 3.7 560.40 2155.30 .05 3.0 2.65 1.13 .090 .060 .110 .000 555.90 1215.33 .000259 330. 230. 270. CWSEL= 576.32 1910.96 1800. 1806. 1840. 187	120.000 20.42 576.32 .00 .00 576.36 .05 .17 .07 562.40 5150.0 5150.0 2558.7 1747.1 844.2 2958.2 659.8 747.9 24.7 3.7 560.40 5150.0 2558.7 1747.1 844.2 2958.2 659.8 747.9 24.7 3.7 560.40 1215.33 .000259 330. 230. 270. 270. 2 .000 CWSEL= 576.32 .000 695.63 1910.96 120.00 CWSEL= 576.32 1800. 1400. 1500. 1600. 1700. 1715. 1800. 1806. 1840. 1875 1800. 1.0 5.5 6.1 5.2 10.1 2.4 17.6 1.8 33.9 12.3 3.9	20.000 20.42 576.32 .00 .00 576.36 .05 .17 .07 562.40 5150.0 5258.7 1747.1 844.2 2958.2 659.8 747.9 24.7 3.7 560.40 5150.0 5150.0 2558.7 1747.1 844.2 2958.2 659.8 747.9 24.7 3.7 560.40 5150.0 2558.7 1747.1 844.2 2958.2 659.8 747.9 .00 555.90 1215.33 .000259 330. 2.65 1.13 .090 .060 .110 .00 695.63 1910.96 .00 695.63 1910.96 .000259 330. 120.00 CWSEL= 576.32 1800. 1806. 1840. 1875. 1215. 1300. 1400. 1500. 1600. 1700. 1715. 1800. 1806. 1840. 1875. 1215. 136.2 411.8 441.8 401.8 596.8 118.0 779.2 72.7 659.8 497.6 221.7	20.000 20.42 576.32 .00 .00 576.36 .05 .17 .05 .17 .07 562.40 5150.0 2558.7 1747.1 844.2 2958.2 659.8 747.9 24.7 3.7 560.40 1215.33 .000 2558.7 1747.1 844.2 .090 .060 .110 .000 555.90 1215.33 .000259 330. 230. 270. CWSEL= 576.32 1800. 1806. 1840. 1875. DISTRIBUTION FOR SECNO= 120.00	20,000 20.42 576.32 .00 .00 576.36 .17 .07 562.40 .150.00 2558.7 1747.1 844.2 2958.2 659.8 747.9 24.7 3.7 560.40 .2558.7 1747.1 844.2 2958.2 659.8 747.9 24.7 3.7 560.40 .2558.7 1747.1 844.2 2958.2 659.8 747.9 24.7 3.7 560.40 .2558.7 1747.1 8.4 41.8 401.8 596.8 118.0 779.2 72.7 659.8 497.6 221.7 8EA = 1.6 4.1 4.4 4.0 6.0 7.9 9.2 12.1 19.4 14.2 8.9	00.000 20.42 576.320000 576.36051707 562.40	00.000 20.42 576.32 .00 576.36 .05 .17 .07 562.40 .10 10.00 2558.7 1747.1 844.2 2958.2 659.8 747.9 24.7 3.7 560.40 .00 10.00 2558.7 1747.1 844.2 .09	120.000 2558.7 17.39:37	5150.00 25.42 576.32 8.00 576.36 7.05 7.17 7.07 562.40 5150.00 525.87 7.07 7.17 7.07 562.40 5150.00 525.87 7.17 7.17 7.17 7.00 525.90 1215.33 7.00 525.90 1215.33 7.00 525.80 1210.96 7.00 525.90 1215.33 7.00 525.90 1215.33 7.00 525.90 1215.33 7.00 525.90 1215.33 7.00 525.90 1215.33 7.00 525.90 1215.33 7.00 525.90 120.00 5.5 6.1 5.2 10.1 2.4 17.6 1.8 33.9 12.3 3.9 12.3 3.9 12.18 13.0 5.5 6.1 5.2 10.1 2.4 17.6 1.8 33.9 12.3 3.9 12.3 3.9 12.18 13.0 5.5 6.1 5.2 10.1 2.4 17.6 1.8 33.9 12.3 3.9 12.3 3.9 12.18 13.0 5.5 6.1 5.2 10.1 2.4 17.6 1.8 33.9 12.3 3.9 12.3 3.9 12.18 13.0 5.5 6.1 5.2 10.1 2.4 17.6 1.8 33.9 12.3 3.9 12.3 3.9 12.18 13.0 5.5 6.1 5.2 10.1 2.4 17.6 1.8 13.9 12.3 3.0 12.3 3.0 12.3 3.0 12.3 3.0 12.3 3.0 12.3 3.0 12.3 3.0 12.3 3.0 12.3 3.0 12.3 3.0 12.3 3.0 12	120.000 250.42 576.32	120.000 20.42 576.32 1.00	12.00 25.84.7 1.00 25.84.2 1.00 25.84.3 1.00 25.84.3 1.00 25.84.3 1.00 25.84.3 1.00 25.84.3 1.00 25.84.3 1.00 25.84.3 1.00 25.84.3 1.00 25.84.3 1.00 25.8 25.8 2	100. 200, 200. 42	1150. 200. 258.47 17471 844.2 2938.2 0.05 559.8 74.7 56.40 20.00 255.90 120.30 200. 255.7 17471 844.2 2938.2 0.00 559.8 74.7 560.40 20.00 255.7 17471 844.2 2938.2 0.00 255.90 120.00 255.90 120.00 255.90 120.30 20.00 255.90 120.30 20.00 255.90 120.30 20.00 255.90 120.30 20.00 255.90 120.30 20.00 255.30 120.30 20.00 255.30 120.30 20.00 255.30 120.30 20.00 255.30 120.30 20.00 255.30 120.30 20.00 255.30 255.30

576.70	20 .07 .00 567.50 .0 79.8 11.3 100000.00 00 .000 558.00 1878.00 0 .00 120.00 1998.00				HL OLOSS L-BANK ELEV VOL TWA R-BANK ELEV WTN ELMIN SSTA CORAR TOPWID ENDST		SS ELCHU ELCHD 3.24 558.00 558.00		ID ELLC ELTRD WEIRLN	. 574.90 577.40 0.	120 000	l L	5//.40	9 .40 .00 571.40 0 80.7 11.4 100000.00 0 .000 558.00 1878.00 0 .00 120.00 1998.00
TRAVISFW_DUP 576.70 ELREA=	.TC-2 **	576.63			HV AROB XNR I CONT		BAREA 30 1050.00		TRA	AKEA 50. 1061	1 TARGET=	, i	5//.40 ELREA=	23 .19 5.5 .000 060 .000
	C-3; OVBKS FM A .00 576.83 .000 .060 .060	CWSEL=			LK EG 3 ACH XNCH IDC		BWP 3.00	1998.00	BAREA	.0. 1050	TVPE=] - -		.00 577.23 .0 1456.5 000 .060
/E, ELLEA=	SEC AT				WSELK ALOB XNL ITRIAL		BWC 11.00	STENCR=	QPR	. 5150	1998		E, ELLEA=	* * * 00
NON-EFFECTIVE,	SIPEE RD: .00 .00 .00 .85.	935.00			CRIWS QROB VROB XLOBR		RDLEN		QWEIR	0	1878 0		-EFFECTIVE	FM .
ASSUMED NON	1593 05 576.63 5150.0 3.57 85.	SECN0=		:37	CWSEL QCH VCH XLCH		COFQ 2.50	= 1878.00	Н3	.01	-SNOTTATA		ASSUMED NON	1593; OVBKS 577.03 5150.0 3.54 26.
AREA	** SR 18.63 .00 .85.	BUTION FOR	78. 1998 100.0 1441.0 3.6 12.0	17:39:	DEPTH QLOB VLOB XLOBL	DGE	XKOR 1.60	000 DGE STENCL= OW	EGLWC	576.84			AREA	** SR 19.03 .0 .00 .26.
3495 OVERBANK	935.000 5150.0 .111 .000838	FLOW DISTRIBUTION FOR	STA= 1878 PER Q= 14 AREA= 14 VEL= DEPTH=	1 03NOV14 PAGE 14	SECNO Q TIME SLOPE	SPECIAL BRIDGE	SB XK 1.00	*SECNO 961.000 BTCARD, BRIDGE PRESSURE FLOW	EGPRS	577.23	3470 ENCBOACHMENT		3495 OVERBANK	961.000 5150.0 112 .000820

									1510.	
		564.90 564.70 1838.04 2079.03		L-BANK ELEV R-BANK ELEV SSTA ENDST		30. 2079. 30.1 1.0	565.10 567.00 1082.02 1510.13		65. 1500 209.6 10 16 1	569.10 568.30 1418.77
		.01 11.7 558.10 240.99		OLOSS TWA ELMIN TOPWID		2000. 2050 228.7 1.2 4.6	.01 16.5 560.10 428.11		300. 136 299.2 1.2 4.6	.04 25.5 562.90
		.05 82.9 .000		HL VOL WTN CORAR		980. 20 176.5 1.8 8.8	.70 113.0 .000		1209. 13(655.4 655.4 7.2	1.59 168.6 .000
P 33		.23 687.7 .110		HV AROB XNR ICONT	20	958. 10.8 252.4 2.2 11.5	.19 1651.3 .120	0	1200. 12.6 75.6 1.8 8.4	.28 252.0 .110
TRAVISFW_DUP EL= 577.03		577.29 593.1 .060		EG ACH XNCH IDC	= 577.07	1925. 1 55.4 593.1 4.8 18.0	577.99 509.2 .060	= 577.80	1150. 12.8 392.6 1.7 7.9	579.62 523.3 .060 Page 22
TR CWSEL:		** 519.1 .090 1		WSELK ALOB XNL ITRIAL	CWSEL	1914. 6.3 122.9 2.6 11.2	.00 204.0 .100 2	CWSEL	1148. 17.8 11.1 8.9	.00 982.7 .110
961.00		CHAN FM ATC-3 '		CRIWS QROB VROB XLOBR	1020.00	3.2 76.3 2.1 2.1 8.5 10.0	NEF .00 2321.0 1.41 630.	1650.00	2.9 65.4 509.2 2.3 10.9 17.0	.00 470.8 1.87
SECNO=		SEC; 577.0 2854. 4.8 59	:37	CWSEL QCH VCH XLCH	SECNO=	. 2.5 91.5 1.4 4.6	-4 WITH 577.80 2465.8 4.84 630.	SECNO=	3.2 88.2 1.9 7.4	579.34 2854.3 5.45
UTION FOR	78. 1998 100.0 1456.5 3.5 12.1	000 ** TOPO 18.97 1127.8 2.17 59.	17:39:	DEPTH QLOB VLOB XLOBL	DISTRIBUTION FOR	. 1865 28.0 1.0	000 ** ATC 17.70 363.1 1.78 630.	DISTRIBUTION FOR	. 1100. 50.4 1.0 2.8	.000 ** ATC 16.44 1824.9 1.86
FLOW DISTRIBUTION FOR	STA= 1878 PER Q= 1AREA= 1AVEL=	*SECNO 1020.000 1020.000 5150.0 1 .001036	1 03NOV14 PAGE 15	SECNO Q TIME SLOPE	FLOW DISTRIB	STA= 1838 PER Q= AREA= VEL= DEPTH=	*SECNO 1650.000 1650.000 5150.0 .001178	FLOW DISTRIB	STA= 1082 PER Q= AREA= VEL= DEPTH=	*SECNO 2825.0

1660.16				L-BANK ELEV R-BANK ELEV SSTA ENDST	572.80 572.00 1493.35 1728.87		9.8 9.8 1.1	573.90 573.10 1365.52 1719.95		
241.39				OLOSS TWA ELMIN TOPWID	.01 34.9 566.60 235.52		1670. 1720. 235.8 1.6 4.7	.04 38.8 567.70 354.43		
00.		1660.		HL VOL WTN CORAR	2.90 236.1 .000		.635. 16 263.1 263.1 7.5	.74 263.1 .000		1720.
0	4	.635. 2.9 108.6 1.4 4.3		HV AROB XNR ICONT	.30 639.0 .110	01	624. 10 3.8 85.4 2.3 7.8	.13 502.7 .110		1685. 17 55.5 1.6
TRAVISFW_DUP 0	579.34	624. 1.1 94.4 2.2 8.6		EG ACH XNCH IDC	582.52 495.5 .060	582.22	1619. 16 44.8 44.8 2.3 9.0	583.30 490.7 .060	583.17	1640. 16 6.6 255.5 1.3 5.7
TRA 2	CWSEL=	1619. 2.2 48.9 2.3 2.3 9.8		WSELK ALOB XNL TTRIAL	.00 533.8 .110	CWSEL=	1585. 54.7 495.5 14.6	.00 1460.7 .110	CWSEL=	1619. 6.8 191.7 1.8 9.1
1175.	325.00	2.0 45.7 523.3 2.2 9.1 15.4		CRIWS QROB VROB XLOBR	ATC-5 ** .00 1268.3 1.98 1715.	4540.00	1580. 2.1 0.1 44.1 0.3 2.4 7.7 8.8	FM ATC-5 ** .00 723.9 1.44 570.	5110.00	1585. 339.2 5 490.7 1.8 4.1
1175.	SECNO= 28	25.6 626.9 7.8	37	CWSEL QCH VCH XLCH	CHAN FM 582.22 2818.0 5.69 1717.	SECNO= 45	1545. 11.8 2.12.3 2.70. 1.6 4.7 7.7.	CHAN 583.17 2020.6 4.12 570.	SECNO= 51	0. 1455. 3.3 255.5 1134.5 11.8 1.8 5.7 8.7
1175.	UTION FOR	7.8 310.1 1.3 3.8	17:39:	DEPTH QLOB VLOB XLOBL	000 ** TOPO; 15.62 1063.7 1.99 1715.	JTION FOR	. 1500. 7.4 2 6 1.1	2405.4 1.65 1.65 570.	JTION FOR	. 1410. 8 70.7 2 1.6
.001563	FLOW DISTRIBUTION	STA= 1419 PER Q= AREA= VEL= DEPTH=	1 03NOV14 PAGE 16	SECNO Q TIME SLOPE	*SECNO 4540.000 4540.000 5150.0 .001828	FLOW DISTRIBUTION	STA= 1493, PER Q= AREA= VEL= DEPTH=	*SECNO 5110.000 5110.000 5150.0 2	FLOW DISTRIBUTION	STA= 1366. PER Q= AREA= VEL= DEPTH=

*SECNO 5770.000

567.00		L-BANK ELEV R-BANK ELEV SSTA ENDST		WEIRLN	0.		576.00 575.20 2050.00 2093.00							573.90 572.30 1990.00 2155.00
567.70		OLOSS TWA ELMIN TOPWID		ELTRD	586.00		.00 42.1 569.00 43.00						0	.16 42.3 569.30 165.00
00.		HL VOL WTN CORAR		ELLC	580.70	586.30	1.18 290.8 .000					1.81	165.000	. 12 292.4 . 000
JP 520.00		HV AROB XNR ICONT		TRAPEZOID	AKEA 520.	ELREA=	66. 0.00 0	90				KRATIO =	TARGET=	.19 766.1 .100
TRAVISFW_DUP 3.00		EG ACH XNCH IDC		BAREA .	520.	586.30	585.89 634.5 .060	_= 584.90				E RANGE,	³E= 1	586.16 415.2 .060
T 43.00		WSELK ALOB XNL ITRIAL		QPR	5065.	ELLEA=	.00.	CWSEL				OF ACCEPTABLE	2155.0 TYPE= NEF ROB **	.100 .100
00'		CRIWS QROB VROB XLOBR		QWEIR	0.		.00 .00 .00 .57.	5867.00				SIDE	1990.0 MOD FOR NEI	33.7.00
2.50	37	CWSEL QCH VCH XLCH		Н3	.29	ASSUMED NON-EFFECTIVE,	584.90 5065.0 7.98 57.	SECNO= 5			HAN HVINS	NCE CHANGE OUT		
1.62	000 17:39:37	DEPTH QLOB VLOB XLOBL	Μ	EGLWC	584.95		15.90 .0 .00 57.		2093. 100.0 634.5 8.0 14.8	000	HV CHANGED MORE THAN HVINS	: CONVEYANCE	HMENT STAT.	16.67 585.97 1029.7 2003.3 1.90 4.83 83. 63.
1.25	*SECNO 5867.000 1 03NOV14 PAGE 18	SECNO Q TIME SLOPE	PRESSURE FLOW	EGPRS	585.89	3495 OVERBANK AREA	5867.000 5065.0 .004072	FLOW DISTRIBUTION FOR	STA= 2050, PER Q= 1 AREA= (VEL= DEPTH=	*SECNO 5930.000	3301 HV CHANG	3302 WARNING:	3470 ENCROACHMENT	5930.000 4760.0 .001094

17:39:37

03NOV14 PAGE 19

L-BANK ELEV R-BANK ELEV SSTA ENDST			574.70 573.10 1907.15 2251.18		1.	577.40 576.70 1153.84 1351.12				L-BANK ELEV
OLOSS TWA ELMIN TOPWID			.02 43.6 570.10 344.03		2230. 2251 13.5 .3	.04 52.6 572.20 197.28				01.055
HL VOL WTN CORAR			. 20 302.8 . 000		170. 4.7 226.2 1.0 3.8	1.46 369.2 .000				H
HV AROB XNR ICONT	26	2155.	.11 1141.4 .100 0	27	2150. 2 5.5 162.4 1.6 8.1	325.6 .100 0	. 66			¥
EG ACH XNCH IDC	L= 585.	2150. 1.1 8 46.0 3 1.1 3 9.2	586.38 402.2 .060	= 586.	2085. 28.5 690.4 2.0 10.6	/ LOB ** 587.88 423.2 .060	= 587	1351.		EG Page 26
WSELK ALOB XNL ITRIAL	CWSEL	2085	858.9 .100	CWSEL	2081. 2 48.9 9 2.0 5 12.2	HIGHER ELEV .00 811.4 .090	CWSEL	1300. .9 5.2 .4 188.2 .4 1.3		WSELK
CRIWS QROB VROB XLOBR	5930.00	2081. 42.1 2.49. 415.2 49. 4.8 2. 16.0 12.	OR NEF ROB ** .00 .1943.5 1.70 220.	6150.00	2.2 54.6 6.402.2 2.0 3.9 10.9	FOR NEF AT H00 576.6 1.77 1460.	7610.00	43.9 6. 423.2 137. 4.9 2. 15.1 9.		CRIWS
CWSEL QCH VCH XLCH	SECN0=	2055 2.7 55.1 2.3 11.0	C-8 MOD FOR 586.27 1570.8 3.91 220.	SECN0=	22.7 717.1 1.5 7.2	C-9 , MOD 587.66 2088.1 4.93 1460.	SECN0=	35.3 579.2 10.2	:37	CWSEL
DEPTH QLOB VLOB XLOBL	SUTION FOR	2050. 19.0 486.6 1.9 8.1	000 ** ATC 16.17 1245.7 1.45 220.	SUTION FOR	. 1.2 87.2 87.2 2.0	.000 ** ATC- 15.46 2095.3 2.58 1460.	UTION FOR	. 8.7 232.2 1.8 5.0	17:39:	DЕРТН
SECNO Q TIME SLOPE	FLOW DISTRIBUTION	STA= 1990 PER Q= AREA= VEL= DEPTH=	*SECNO 6150.000 6150.000 4760.0 .51 .000748	FLOW DISTRIBUTION	STA= 1907 PER Q= AREA= VEL= DEPTH=	*SECNO 7610. 7610.000 4760.0 .001402	FLOW DISTRIBUTION	STA= 1154 PER Q= AREA= VEL= DEPTH=	1 03NOV14 PAGE 20	SECNO

R-BANK ELEV SSTA ENDST	576.50 576.50 1132.02 1316.53	576.50 576.50 980.78 1307.16 576.70 581.00 980.48		L-BANK ELEV R-BANK ELEV SSTA ENDST
TWA ELMIN TOPWID	. 01 55.7 571.50 184.51	. 01 56.8 171.50 126.39 1.6 1.6 1.1 2.2 71.60 27.65		OLOSS TWA ELMIN TOPWID
VOL WTN CORAR	.88 396.0 .000	1317. 1 ATC-10** 405.2 .000 .000 1225. 160.8 2.1 2.1 2.1 2.1 2.1 2.1 2.1		HL VOL WTN CORAR
JP AROB XNR ICONT	.18 1230.1 .110 0	39.6 39.6 2.4 2.4 -110 427.0 .110 5 5 5 5 6.3 6.3 6.3		HV AROB XNR ICONT
TRAVISFW_DUP ACH XNCH IDC	588.77 380.6 060	= 588. 1278. 173.6.4 1.8.97 588.97 386.7 .060 .060 1190. 1105.9 11.8 10.6 589.01 716.0 .060		EG ACH XNCH IDC
ALOB XNL ITRIAL	.00 167.4 .120	CWSEL= 0. 1200. 1 120.4 896.4 2.4 2.3 12.0 11.5 PORTIONS OF ROB 00 1602.8 20 120 0. 120 0. 11.6 1.9 4.2 1.9 386.7 1.9 386.7 1.9 386.7 1.9 4.2 1.1.6 16.1 0. 00 1548.1 76 1548.1		WSELK ALOB XNL ITRIAL
QROB VROB XLOBR	.00 2714.3 2.21 700.	310.00 8.1 119 6.6 5.9 5.9 511 119 119 8.6 6.1 1.7 1.7 9.8		CRIWS QROB VROB XLOBR
QCH VCH XLCH	C-10 ** 588.59 1814.6 4.77 700.	ECNO= 1166 4.6 4.6 4.3 1.5 7.6 588.85 588.85 1608.5 190. 190. 100 100 100 100 100 100 100 100 100 1	37	CWSEL QCH VCH XLCH
ALOBL VLOB QLOB	000 ** ATC-10 ** 17.09 588 231.1 181. 1.38 4 700.	DISTRIBUTION FOR SI (Q= 3.3 147. (EL= 1.5 144. (EL= 1.5 144. (O 8500.000 17.35 17.35 17.35 17.35 17.35 17.35 17.35 17.35 17.35 17.35 17.35 17.35 17.35 17.31 1	17:39:	DEPTH QLOB VLOB XLOBL
Q TIME SLOPE	*SECNO 8310.000 8310.000 4760.0 .69	FLOW DISTRIBUTION FOR STA= 1132. 1147 PER Q= 23.2 AREA= 23.2 VEL= 1.5 *SECNO 8500.000 ** TOI 8500.000 17.35 4760.0 2640.0 .71 1.65 .000854 190. FLOW DISTRIBUTION FOR STA= 981. 1000 PER Q= 36.9 VEL= 1.9 *SECNO 8550.000 ** PR3 *SECNO 8550.000 17.31 4760.0 2137.5 .000607 550.	1 03NOV14 PAGE 21	SECNO Q TIME SLOPE

		ELCHD 571.60				WEIRLN	358.	576.70 581.00 887.61 1318.80			576.60 576.60 887.49 1319.10		L-BANK ELEV R-BANK ELEV SSTA
1308.		ELCHU 571.60				ELTRD	587.70	.00 57.4 571.60 431.20		.6.	.00 57.8 571.60 431.60		OLOSS TWA ELMIN
300. 13 2.0 2.1 .3		55.37		1.45		ELLC	586.50	. 60 409.4 . 000		1300. 1319 .0 11.0	412.9 .000		HL VOL WTN
1225. 1. 2.0 165.3 2.2		BAREA 509.00		KRATIO =	Shape	TRAPEZOID	AKEA 517.	.04 350.6 .110	7	1225. 13 2.1 214.9 2.9	4900		HV AROB XNR
1206. 2.5 112.2 1.1 5.9		BWP 4.80		E RANGE,	TRAPEZOIDAL	BAREA	509.	ROADWAY ** 589.61 745.8 .060	= 589.57	1206. 2.1 124.7 6.6	589.62 402.0 .060		EG ACH XNCH Page 28
1161. 8 50.6 1 716.0 6 3.4 6 15.9		BWC 34.00		: ACCEPTABLE	Based on TR	QPR	2823.	OF ROB FM .00 2691.6 .120	CWSEL=	1161. 8 37.4 7 745.8 1 2.4 2.4	.165		WSELK ALOB XNL
7.3 28.8 247.6 878.1 1.6 9.9 11.6		RDLEN.00		OUTSIDE OF	Submergence B	QWEIR	1913.	PORTIONS .00 200.6 .57 .19.	8569.00	1005. 6 44.8 1 1905.7 0 1.1	.06.		CRIWS QROB VROB
384.3 247 1.0 6.4		COFQ 2.50		NCE CHANGE	Weir	Н3	.02	589.57 1782.2 2.39 19.	SECN0= 85	7.5 980. 7.6 459.3 264.1 10.6 7.1 10.6	30.2 30.2 2.44 41.	2	CWSEL QCH VCH
1000 38.1 2.0	3E	XKOR 1.47	.000	: CONVEYANCE	AND WEIR FLOW,	EGLWC	589.01	** TOPO V 17.97 2777.2 1.03 19.	FOR	915 62.5 7.3	99 3.7 22 11.	17:39:3	DEPTH QLOB VLOB
STA= 980. PER Q= AREA= VEL= DEPTH=	SPECIAL BRIDGE	SB XK 1.10	*SECNO 8569.0	3302 WARNING:	PRESSURE AND	EGPRS	590.90	8569.000 4760.0 .72 .000290	FLOW DISTRIBUTION	STA= 888. PER Q= AREA= VEL= DEPTH=	610 00 .0 73 78	1 03NOV14 PAGE 22	SECNO Q TIME

TRAVISFW_DUP CWSEL= 588.91

FLOW DISTRIBUTION FOR SECNO= 8550.00

ENDST		.61	579.00 578.90 1448.13 1764.46		8. 1764. 5:0 5:0 .8	579.90 579.80 1451.85 1767.70				L-BANK ELEV R-BANK ELEV SSTA ENDST
TOPWID		1300. 1319 11.3 11.3 .6	.02 68.9 574.50 316.33		1730. 1758 175.1 1.0 6.3	.01 72.5 575.40 315.85				OLOSS TWA ELMIN TOPWID
CORAR		1225. 13 216.3 2.9	.49 507.3 .000		1700. 17 334.6 334.6 11.2	.32 534.7 .000		1768.		HL VOL WTN CORAR
UP ICONT	.59	3.4 177.1 7.1	.08 1031.7 110 0	05	1657. 14.0 445.2 1.5 10.4	.11 692.9 .110	35	1760. 1.3 1.3		HV AROB XNR ICONT
TRAVISFW_DUP IDC	= 589	1190. 6 2.9 0 112.8 4 1.2 8 11.3	590.13 486.6 .060	.L= 590.05	1650. 2.2 6 71.8 5 11.5 2 10.3	590.46 467.3 .060	L= 590.	1710. 6 2.3 5 142.5 5 2.9		EG ACH XNCH IDC
ITRIAL	CWSEL	1166. .8 402.0 .8 402.0 .3 2.4 .3 16.8	.00 1122.8 .090	CWSEL	1618. 32.7 .3 32.7 .1 486.6 .8 3.2 .5 15.2	.00 1061.0 .090 2	CWSEL	1680.		WSELK ALOB XNL ITRIAL
XLOBR	8610.00	0. 1005. 264.6 1977.8 11.2 11.3 10.6	.00 1476.3 1.43 1300.	9910.00	1. 1600. 7.3 607.4 189.1 1.8 9.2 10.5	.00 1028.0 1.48 490.	10400.00	38.0 12.3 467.3 313. 3.8 11.8 14.6 10.8		CRIWS QROB VROB XLOBR
XLCH	SECNO=	8.8 460.5 7.1	C-12 ** 590.05 1556.6 3.20 1300.	SECN0=	1534 0 0 3	PO ** 590.35 1757.0 3.76 490.	=0N0	37.1 332.2 1.8 7.9	:37	CWSEL QCH VCH XLCH
XLOBL	STRIBUTION FOR	. 915 63.0 2.3	.000 ** ATC- 15.55 1727.1 1.54 1300.	SUTION FOR	1.5 110.3 2.1	0.000 ** TOPO 14.95 1835.0 1.73 490.	SUTION FOR	2.6 128.8 2.7	17:39	DEPTH QLOB VLOB XLOBL
SLOPE	FLOW DISTRIE	STA= 887 PER Q= AREA= VEL= DEPTH=	*SECNO 9910.000 9910.000 4760.0 .91	FLOW DISTRIBUTION	STA= 1448 PER Q= AREA= VEL= DEPTH=	*SECNO 10400.000 10400.000 1 4620.0 18 .000791	FLOW DISTRIBUTION	STA= 1452 PER Q= AREA= VEL= DEPTH=	1 03NOV14 PAGE 23	SECNO Q TIME SLOPE

*SECNO 11140.000

.63 3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO =

581.30 580.40 1399.75 1588.34			583.40 583.10 1156.31 1380.95			585.40 585.10 1066.06 1326.15		L-BANK ELEV R-BANK ELEV SSTA ENDST		
.01 76.8 576.70 188.58			.01 84.5 578.50 224.64			.02 90.8 580.50 260.09		OLOSS TWA ELMIN TOPWID		
.70 .000 .000			1.61 627.4 .000		381.	1.22 671.3 .000		HL VOL WTN CORAR		1326.
231.5 .100 .00	.03	1588.	.08 1201.9 .100	.71	1340. 5.8 184.4 11.1 4.5	.14 517.3 .100		HV AROB XNR ICONT	89	1295. 13
V LOB ** 591.17 290.2 .060	= 591	1555. 6.4 9 160.5 4 1.4 1.4	592.79 288.0 .060	.= 592	1300. 1300. 1362.3 18.4 9.1	594.04 270.1 .060		EG ACH XNCH IDC	= 593.	1260. 4 Page 30
HIGHER ELEV .00 .938.4 .100	CWSEL	1548.	.00 338.5 .100	CWSEL	1230. 33. 33. 0 655. 1.	4 ** .00 765.7 .110		WSELK ALOB XNL ITRIAL	CWSEL	1230. .6
FOR NEF AT .00 403.6 1.74 740.	11140.00	1527. 17.3 34 264.1 290 2.4 4 9.8 13	.00 2103.6 1.75 1630.	2770.00	3.8 27 74.1 288 1.9 3	AN FM ATC-14 .00 .1038.4 2.01 1130.		CRIWS QROB VROB XLOBR	900.006	1208.
-13, MOD 591.03 1258.5 4.34 740.	SECN0=	. 24.4 371.7 2.4 9.8	* ATC-14 ** .21 592.71 3.5 988.0 .58 3.43 30. 1630.	SECNO= 12	7.8 157.7 1.8 8.8	PO WITH CHAN 593.89 1216.3 4.50 1130.	:37	CWSEL QCH VCH XLCH	SECN0= 13	18.7
** ATC 14.33 1962.9 2.09 740.	BUTION FOR	. 12.4 302.6 1.5 4.9	.000 * 14	BUTION FOR	3.1 106.7 1.1 4.2).000 ** TOPO 13.39 1370.3 1.79 1130.	17:39	DEPTH QLOB VLOB XLOBL	UTION FOR	1.7
11140.000 3625.0 1.03	FLOW DISTRIBUTION	STA= 1400 PER Q= AREA= VEL= DEPTH=	*SECNO 12770 12770.000 3625.0 1.24 .000808	FLOW DISTRIBUTION	STA= 1156, PER Q= AREA= 1 VEL= DEPTH=	*SECNO 13900.000 13900.000 1 3625.0 13 1.36	1 03NOV14 PAGE 24	SECNO Q TIME SLOPE	FLOW DISTRIBUTION	STA= 1066. PER Q=

AREA= VEL= DEPTH=

	ELCHD 581.30		WEIRLN	. 65.	586.30 100000.00 1660.00 1725.00					L-BANK ELEV R-BANK ELEV SSTA ENDST		585.40 586.30 1627.00 1772.00
	ELCHU 581.30		ELTRD	595.10	.00 92.6 581.30 65.00					OLOSS TWA ELMIN TOPWID	Q	.03 92.7 581.50 145.00
	SS 1.04		ELLC	593.80	65.000 .33 683.8 .000					HL VOL WTN CORAR	145.000	.06 685.1 .000 .00
	BAREA 639.00	. Shape	TRAPEZOID ARFA	632.	TARGET= .30 .000	34				HV AROB XNR ICONT	TARGET=	.16 532.1 .100 0
	BWP 1.44	1725.00 on TRAPEZOIDAL	BAREA	639.	TYPE= 1 F ** 595.65 806.3	= 595.				EG ACH XNCH IDC	TYPE= 1	595.74 419.2 .060 0 Page 32
	BWC 39.00	k= Based	QPR	3486.	1725.0 WITH NE .00 .00.	CWSEL				WSELK ALOB XNL ITRIAL	1772.0 TY	.00 462.0 .110 2
	RDLEN	00 STENCR= ubmergence B	QWEIR	53.	1660.0 (S FM TOPO, .00 .00 .00 .10	14385.00				CRIWS QROB VROB XLOBR	1627.0	17
	COFQ 2.70	= 1660.00 M, Weir Subm	Н3	.01	T STATIONS= 16 ** SR 1504; OVBKS 4.04 595.34 .0 3565.0 .00 4.42 21. 21.	SECNO= 1			37	CWSEL QCH VCH XLCH	NS=	CHAN FN 595.58 1767.6 4.22 50.
DGE	XKOR 1.44	14385.000 , BRIDGE STENCL: RE AND WEIR FLO	EGLWC	595.32	CHMENT STAT ** SR 14.04 .0 .00 .00	SUTION FOR	1660. 1725. = 100.0 = 806.3 = 4.4	000.	17:39:37	DEPTH QLOB VLOB XLOBL		** TOPO; 14.08 815.1 1.76 50.
SPECIAL BRIDGE	SB XK .95	*SECNO 14385.000 BTCARD, BRIDGE STENCL= PRESSURE AND WEIR FLOW,	EGPRS	595.68	3470 ENCROACHMENT 14385.000 14 3565.0 1.38 .001635	FLOW DISTRIBUTION	STA= 1660 PER Q= AREA= VEL= DEPTH=	*SECNO 14435.000	1 03NOV14 PAGE 26	SECNO Q TIME SLOPE	3470 ENCROACHMENT	14435.000 3565.0 1.39

FOR SECNO= 144 1675. 1707. 9 419.2 163	4.2 2.1 1 13.1 9.1 7		CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO = 2.16	** ATC-17 ** 13.71 595.91 .00 .00 595.93 .02 .16 .03 586.10 1460.3 666.6 1918.1 739.5 407.5 2334.5 710.1 96.1 587.00 .62 1.64 .82 .110 .060 .090 .000 582.20 1238.03 .62 445. 445. 236.10 .000 515.79 1753.81	ON FOR SECNO= 14880.00 CWSEL= 595.91	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO = .43	** TOPO SEC; CHAN FM SEC ATC-17 **	17:39:37	PTH CWSEL CRIWS WSELK EG HV HL OLOSS L-BANK ELEV OB QCH QROB ALOB ACH AROB VOL TWA R-BANK ELEV OB VCH VROB XNL XNCH XNR WTN ELMIN SSTA OBL XLCH XLOBR ITRIAL IDC ICONT CORAR TOPWID ENDST	1.86 596.06 .00 .00 596.16 .10 .20 .03 588.10 14.5 1197.7 1632.9 167.9 348.3 1019.7 744.6 101.4 589.00 1.28 3.44 1.60 .110 .060 .090 .000 584.20 1330.74 700. 700. 550. 2 0 .00 258.83 1589.58	N FOR SECNO= 15580.00 CWSEL= 596.06	1335. 1350. 1366. 1398. 1520. 1580. 1590. 0 1.6 5.4 39.3 45.5 8.1 .1 3 53.5 112.2 348.3 800.8 213.8 5.1 Page 33
FOR SECNO= 1675. 1707 49.6 419.2		00	CONVEYANCE CHAN	ATC-17 71 53 62 5.	SECNO=	1.9 109.3 5.5	00	CONVEYANCE CHANG	TOPO SEC;	:39:3	DEPTH CWSEL QCH QCH VLOB VCH XLOBL	11.86 596.06 214.5 1197.7 1.28 3.44 700. 700.	SECN0=	1335. 1350 .0 1.6 .3 53.5
TRIE 1627	VEL= DEPTH=	*SECNO 14880.000	3302 WARNING:	14880.000 3045.0 1.51	FLOW DISTRIBUTION FOR	STA= 1238. PER Q= AREA= 94 VEL= 2 DEPTH= 2	*SECNO 15580.000	3302 WARNING:	Ţ	1 03NOV14 PAGE 27	SECNO D Q Q Q TIME V SLOPE X	15580.000 3045.0 1.59	FLOW DISTRIBUTION FOR	STA= 1331. PER Q= AREA= 2

5FW_DUP .3 1.1 .3 3.6 .5			RANGE, KRATIO = .37	597.28 .76 .85 .27 589.30 218.6 120.9 755.6 103.3 589.10 .060 .100 .000 585.50 1375.05 0 .00 121.53 1496.58	596.52					HV HL OLOSS L-BANK ELEV AROB VOL TWA R-BANK ELEV H XNR WTN ELMIN SSTA ICONT CORAR TOPWID ENDST	RANGE, KRATIO = 2.71	.72 .08 3.31 .14 593.10 0.6 1244.2 800.3 110.5 592.00 0.00 589.50 1252.67 0 .00 233.17 1485.85	600.64). 1447. 1486. 19.6 5.1 352.5 146.6 1.7 1.1
TRAVISFW_ 1.7 1 6.6 3					CWSEL=	11.2 120.9 2.8 3.7				EG ACH XNCH IDC	ABLE RAI	600.72 270.6 .060	CWSEL=	7. 1400. 33.4 610.0 3 1.7 Page
4.6.			ACCEPTABLE	.00 245.3 .100	CW.	1464				WSELK ALOB XNL ITRIAL	ACCEPTABLE	.00 114.2 .100	CWS	1317
1.5 3. 7.0 10.			OUTSIDE OF	.00 340.2 2.81 450.	16030.00	1442. 13.0 61.4 90.6 218.6 4.4 8.5 7.0 9.9				CRIWS QROB VROB XLOBR	OUTSIDE OF	.00 2003.4 1.61 1760.	790.00	5. 1300. 7.8 270.6 135.1 3.3 1.8
9.8			YANCE CHANGE	ATC-18 ** 2 596.52 5 1868.2 1 8.55	SECNO=	1429. 13.4 128.2 3.2 4.4		THAN HVINS	9:37	CWSEL QCH VCH XLCH	ANCE CHANGE	C-19 ** 600.64 884.8 3.27 1760.	SECNO= 17	. 3.9 72.0 1.6
ώ'n	. 000 FP MOBE	EU	CONVEYANCE	** AT 11.02 836.5 3.41 450.	JTION FO	1.1 26.5 1.2 1.2 1.1	000	ED MORE	17:39	DEPTH QLOB VLOB XLOBL	CONVEYANCE	** ATC 11.14 156.8 1.37 1760.	TION FOR	1.3 42.2 .9
VEL= DEPTH=	\vdash		3302 WARNING:	16030.000 3045.0 1.61 .006459	FLOW DISTRIBUTION FOR	STA= 1375. PER Q= AREA= VEL= DEPTH=	*SECNO 17790.000	3301 HV CHANGED	1 03NOV14 PAGE 28	SECNO Q TIME SLOPE	3302 WARNING:	17790.000 3045.0 1.84 .000880	FLOW DISTRIBUTION	STA= 1253. PER Q= AREA= VEL=

	02100			00000		ELEV (ELEV			
	595.60 595.80 1998.25 2245.80			597.30 597.50 1997.92 2269.06		L-BANK R-BANK SSTA ENDST			598.50 598.70 1694.98 2196.67
	.07 119.6 591.10 247.55			.02 124.3 592.80 271.14		OLOSS TWA ELMIN TOPWID			.02 130.2 594.00 501.70
.63	2.18 851.4 .000		2246.	1.51 873.8 .000		HL VOL WTN CORAR			.75 901.0 .000 .000
KRATIO =	.26 494.9 .110	72	2200. 1.4 57.7 1.3	.16 833.8 .110		HV AROB XNR ICONT	34		.05 454.2 .110
LE RANGE,	602.97 309.1 .060	.L= 602.	2100. 22.2 3 411.9 1 1.6 3 4.1	604.50 306.8 .060		EG ACH XNCH IDC	L= 604.34	2269. 5 8 9	605.27 297.2 .060
OF ACCEPTABLE	282.2 .090	CWSEL	2096. .5 .1 .3 .3 .7 6.	20 ** 209.7 .090		WSELK ALOB XNL ITRIAL	CWSEL	2230. 0 2. 1 84. 7	.00 1407.6 .100
OUTSIDE	OR NEF LOB: 00 773.0 1.56 1640.	0430.00	2067. 9.0 53. 96.9 309. 2.8 5. 6.9 10.	N FM ATC- .00 1354.5 1.62 800.		CRIWS QROB VROB XLOBR	230.00	2096. .8 42 .8 749 .4 1	N FM ATC-20 .00 494.4 1.09 740.
ANCE CHANGE	5-20, MOD F 602.72 1628.5 5.27 1640.	SECN0= 19). 2053. 11.2 155.7 4.7	O SEC; CHAI 604.34 1362.9 4.44 800.	37	CWSEL QCH VCH XLCH	SECNO= 202	2067. 6.6 44 96.7 306. 2.1 4.	O SEC; CHAN 605.21 885.1 2.98 740.
.000 : CONVEYANCE	** ATC- 11.62 643.6 2.28 1640.	UTION FOR	. 2020 29.6 1.0	.000 ** TOPO 11.54 327.5 1.56 800.	17:39:	DEPTH QLOB VLOB XLOBL	FOR	. 2050. 4.1 113.0 1.1 2.2	.000 ** TOPO 11.21 1530.5 1.09 600.
*SECNO 19430.000	19430.000 3045.0 1.96 .002239	FLOW DISTRIBUTION	STA= 1998 PER Q= AREA= VEL= DEPTH=	*SECNO 20230.000 20230.000 1 3045.0 3 2.04 .001608	1 03NOV14 PAGE 29	SECNO Q TIME SLOPE	FLOW DISTRIBUTION	STA= 1998 PER Q= AREA= VEL= DEPTH=	*SECNO 20970.000 20970.000 15 2910.0 15 2.16 .000754

3.8

TRAVISFW_DUP 7.3

7.9

10.8

7.2

3.4

DEPTH=

	599.30 599.00 998.59 1451.60		452.		L-BANK ELEV R-BANK ELEV SSTA ENDST			603.10 602.80 997.47 1451.88		.2.
	.01 130.6 594.10 453.02		1425. 14 69.4 2.6		OLOSS TWA ELMIN TOPWID			.01 131.1 598.40 454.42		.450. 1452 .0 .3 .2 .2
	.02 902.8 .000		1398. 14 5.6 145.7 5.3		HL VOL WTN CORAR		.51	OT CHG** .06 .005.2 .000		70.3 70.3 70.3 7.8 7.8
2197.	.03 215.1 .110 0	.27	1374. 1. 22.0 232.7 2.2 9.7		HV AROB XNR ICONT		KRATIO =	CHAN; STA NOT .06 176.3 .110	1	398. 6.5 105.7 1.4 3.9
.00 .23 .13 .13	ROB ** 605.30 232.7 .060	= 605	1346. 7.2 161.5 1.0 5.8		EG ACH XNCH IDC		E RANGE,	ON NEW 605.37 170.5	= 605.3	1370. 23.5 170.5 3.2 6.1
2155. .3 2.7 .7 108.4 .2 .7	20-A AND NEF .00 .1582.8 .093	CWSEL	1305. 9 14.3 3 283.9 6 1.2 7 6.9		WSELK ALOB XNL ITRIAL		ACCEPTABLE RANGE	XLCH BASED .00 1097.4 .096	CWSEL	1305. 7.3 151.5 11.1 2.3
2096. 30.4 14 97.2 345 3.0 1	BY SEC .00 171.3 .80	1030.00	1300. 6.7 63.1 2.5 10.5 10.5		CRIWS QROB VROB XLOBR		E OUTSIDE OF	FM 21030; .00 231.5 1.31 45.	1075.00	3.6 28.5 28.5 24.6 2.9 3.0 4.8
2067 34.9 756.8 6.0	TOPO SEC, MOD .7 605.27 1 513.7 14 2.21 60.	SECNO= 21	. 1294. 18.5 356.1 1.2 7.3	:37	CWSEL QCH VCH XLCH		ANCE CHANGE	oo w/ OVBKS 605.31 549.0 3.22 165.	SECNO= 21	15.9 216.3 1.7 4.4
. 17.7 550.7 2.7	H CARD USED 21030.000 ** TO .000 11.17 35.0 1650.1 2.17 1.04 2474	SUTION FOR	. 18.1 665.0 2.7	17:39	DEPTH QLOB VLOB XLOBL	USED 0.000	: CONVEYANCE	** TOPO 6.91 1554.5 1.42 45.	UTION FOR	36.7 676.5 1.3 2.7
STA= 1695 PER Q= AREA= VEL= DEPTH=	1490 NH CARD *SECNO 21030 21030.000 2335.0 2.17 .000474	FLOW DISTRIBUTION	STA= 999 PER Q= AREA= (VEL= DEPTH=	1 03NOV14 PAGE 30	SECNO Q TIME SLOPE	1490 NH CARD *SECNO 21075.	3302 WARNING:	21075.000 2335.0 2.18 .001835	FLOW DISTRIBUTION	STA= 997 PER Q= AREA= VEL= DEPTH=

TRAVISFW_DUP CWSEL= 605.21

FLOW DISTRIBUTION FOR SECNO= 20970.00

						>>						
	601.30 601.00 992.65 1366.28			601.30 601.00 1066.59 1405.10		L-BANK ELEV R-BANK ELEV SSTA ENDST					600.70 600.70 1066.23 1405.25	
	.01 131.2 598.00 373.63			.00 132.3 598.00 338.51		OLOSS TWA ELMIN TOPWID					.01 132.5 598.00 339.01	
	.01 905.5 .000			.13 909.7 .000		HL VOL WTN CORAR				.63	.03 910.3 .000	
<u>_</u>	.08 39.6 .110	31		.08 133.6 .110		HV AROB XNR ICONT	44	1405.		KRATIO =	.10 295.8 .110	5
rkavisfw_dup	FM 20-A ** 605.39 617.7 .060	= 605.	1366. 0 2 1 1	605.52 628.9 .060		EG ACH XNCH IDC	L= 605.44	14000 9 1.6 82		LE RANGE,	605.55 159.4 .060	L= 605.4
ı	ROB; CHAN .00 711.4 .100	CWSEL	1365.	.00 580.3 .100		WSELK ALOB XNL ITRIAL	CWSEL=	L348. 131. 2.		OF ACCEPTABLE	21 ** .00 .739.7 .100	CWSEL
	MOD BY 20A .00 .28.4 .72 .72 .10.	21085.00	. 1348. 69.9 617.7 2.6 6.5	EXTENDED ON LOB 44 .00 .6 99.8 60 .75 5. 135.		CRIWS QROB VROB XLOBR	21250.00	1253. 1 11.9 70.1 232.5 628.9 1.2 2.6 4.4 6.6		OUTSIDE	FM SEC .00 446.9 1.51 20.	21270.00
	TOPO; OVBKS N 11 605.31 1 1632.5 05 2.64 0. 10.	SECNO= 21	11.7 226.3 1.2 4.3	A 05. 636 2.	37	CWSEL QCH VCH XLCH	SECNO= 21	13.2 13.2 318.7 1.0 1.0 3.2		NCE CHANGE	20-A W/CHAN 605.45 633.6 3.97 20.	SECNO= 21
000	. 7. 3 674.	SUTION FOR	17.2 485.1 2.3	0.000 ** SEC 20 7.44 6 598.6 1 1.03 1.35.	17:39:	DEPTH QLOB VLOB XLOBL	UTION FOR		000.	: CONVEYANCE	** SEC 7.45 1254.5 1.70 20.	UTION FOR
*CECNO 31085	21085. 233 2000	FLOW DISTRIBUTION	STA= 993 PER Q= AREA= VEL= DEPTH=	*SECNO 21250.000 21250.000 2335.0 5 2.20 .000904	1 03NOV14 PAGE 31	SECNO Q TIME SLOPE	FLOW DISTRIBUTION	STA= 1067 PER Q= AREA= VEL= DEPTH=	*SECNO 21270	3302 WARNING:	21270.000 2335.0 2.20 .002265	FLOW DISTRIBUTION

Page 38

		ELEV					
606.50 606.50 1620.00 1770.00		L-BANK E R-BANK E SSTA ENDST		606.50 606.50 1665.00 1725.00			
.01 142.4 603.80 150.00		OLOSS TWA ELMIN TOPWID		00 .29 142.8 604.30 60.00		00	
2.69 947.2 .000		HL VOL WTN CORAR	. 59	60.000 .99 .948.9 .000 .000		28.000	612.60
. 280.7 . 100	22	HV AROB XNR ICONT	KRATIO =	TARGET= .97 93.5 .100	22	TARGET=	EL.REA=
TRAVISFW_DUP 611.47 158.4 .060	L= 611.22	EG ACH XNCH IDC	LE RANGE,	TYPE= 1 612.74 161.8 .060	.= 611.77)E= 1	612.60 E
.00 278.9 .100	CWSEL	WSELK ALOB XNL ITRIAL	OF ACCEPTABLE RANGE	7725.0 TY .00 .00 .88.5 .100 .	CWSEL	1707.0 TYPE=	ELLEA=
,00 726.0 2,59 530.	22970.00 7. 1770. 280.7 2.6 4.5	CRIWS QROB VROB XLOBR	OUTSIDE	1665.0 .00 383.8 4.11 90.	23110.00 .17.1 93.5 4.1 5.2	1679.0	NON-EFFECTIVE, I
611.22 883.8 5.58 530.	SECNO= .37.9 158.4 5.6 6.3 FHAN HVIN	CWSEL QCH VCH XLCH	ANCE CHANGE	TIONS= 611.77 1495.9 9.25 140.	2 07.	STATIONS=	ASSUMED NON-E
7.42 725.2 2.60 530.	N FOR 1682 9 6 5 5 MORE	DEPTH QLOB VLOB XLOBL	: CONVEYA	HMENT STATIONS= 7.47 611. 360.3 1495 4.07 9.	FOR .682		AREA
22970.000 2335.0 2.34 .004505	FLOW DISTRIBUTION STA= 1620. 1 PER Q= 31.1 AREA= 278.9 VEL= 2.6 2.6 DEPTH= 4.5 *SECNO 23110.000 3301 HV CHANGED MC 1 O3NOV14 17	SECNO Q TIME SLOPE	3302 WARNING:	3470 ENCROACHMENT 23110.000 7. 2240.0 360 2.35 4.	FLOW DISTRIBUTION STA= 1665. 1 PER Q= 16.1 AREA= 88.5 VEL= 4.1 DEPTH= 5.2 *SECNO 23160.000 3301 HV CHANGED MO	3470 ENCROACHMENT	3495 OVERBANK

					ELEV		*0									
	606.50 100000.00 1679.00 1707.00				L-BANK EL R-BANK EL SSTA ENDST		ELCHD 604.70					WEIRLN	19.			606.50
	.36 142.8 604.70 28.00				OLOSS TWA ELMIN TOPWID		ELCHU 604.60					ELTRD	615.20	Q		00.
	.76 949.3 .000				HL VOL WTN CORAR		ss .00			1.55		ELLC	611.60	28.000	615.50	1.54
	1.87 .000 0	66			HV AROB XNR ICONT		BAREA 189.00			KRATIO =	Shape	TRAPEZOID	AKEA 189.	TARGET=	ELREA=	1.04
73 **	613.86 204.1 .060	EL= 611.			EG ACH XNCH IDC		BWP 1.00	00		ACCEPTABLE RANGE,	TRAPEZOIDAL	BAREA	189.	TYPE= 1	615.20	615.40 Page 40
	0.00	CWSEL			WSELK ALOB XNL ITRIAL		BWC 28.00	λ= 1707.00		OF ACCEPTAB	Based on T	QPR	2235.	T707.0 TY	ELLEA=	23 **
ATC-22	50.00.00.00	23160.00			CRIWS QROB VROB XLOBR		RDLEN	00 STENCR=		OUTSIDE	Submergence	QWEIR	2.	1679.0	FFECTIVE,	KS FM SEC
1500. SEC	2240.0 2240.0 10.97 50.	SECNO= 23		:37	CWSEL QCH VCH XLCH		COFQ 2.70	1679.00	THAN HVINS	NCE CHANGE	weir	Н3	.54	STATIONS=	ASSUMED NON-EFF	1500; OVBKS 614.36
**		SUTION FOR). 1707. 100.0 204.1 11.0 7.3	17:39:37	DEPTH QLOB VLOB XLOBL	GE	XKOR 1.57	.000 GE STENCL=	CHANGED MORE T	: CONVEYANCE	AND WEIR FLOW,	EGLWC	614.11		AREA	** SR 9.76
	23160.000 2240.0 2.35 .020196	FLOW DISTRIBUTION FOR	STA= 1679 PER Q= AREA= VEL= DEPTH=	1 03NOV14 PAGE 34	SECNO Q TIME SLOPE	SPECIAL BRIDGE	SB XK 1.25	*SECNO 23201.000 BTCARD, BRIDGE S	3301 HV CHAN	3302 WARNING:	PRESSURE AND	EGPRS	615.41	3470 ENCROACHMENT	3495 OVERBANK	23201.000

Q 0 0					K ELEV K ELEV				0000			
100000.00 1679.00 1707.00					L-BANK R-BANK SSTA ENDST				606.60 606.60 1635.00 1755.00			606.70 606.70 1576.11 1833.03
142.9 604.60 28.00					OLOSS TWA ELMIN TOPWID			000	.19 142.9 604.40 120.00			.01 143.3 604.50 256.92
949.5 .000 .00					HL VOL WTN CORAR		2.97	120.000	.09 950.2 .000			.07 952.9 .000
.000	.36				HV AROB XNR ICONT		KRATIO =	TARGET=	.10 423.8 .110	58		.05 738.2 .110
TRAVISFW_DUP 273.1 .060 0	= 614				EG ACH XNCH IDC		LE RANGE,	TYPE= 1	615.68 254.5 .060	L= 615.		615.76 255.2 .060
0.00.	CWSEL				WSELK ALOB XNL ITRIAL		OF ACCEPTABLE	YT 0.8871	. 00 403.1 . 110	CWSEL	1755. .1 .8 .6	568.2 568.2 110
.00 .00 41.	23201.00				CRIWS QROB VROB XLOBR		OUTSIDE	1635.0	674 674 1.	3245.00	254.5 423.8 254.5 1.6 10.2 8.8	TRANSFERRED .00 880.6 1.19 90.
2240.0 8.20 41.	SECN0=	•		:37	CWSEL QCH VCH XLCH	THAN HVINS	ANCE CHANGE	TIONS=	11.18 615.58 663.6 901.7 1.65 3.54 44. 44.	SECNO= 23	301.9 28.1 1.8 1.8 8.9	PREVIOUS SEC 21 615.71 .4 700.0 16 2.74 0. 90.
.00.41.	SUTION FOR). 1707 100.0 273.1 8.2 9.8	000	17:39:3	DEPTH QLOB VLOB XLOBL	MORE	: CONVEYANCE	HMENT STA	11.18 663.6 1.65 44.	STRIBUTION FOR	. 5.6 101.3 1.2 7.8	.000,** 11. 659 1.
2240.0 2.35 .008365	FLOW DISTRIBUTION	STA= 1679 PER Q= AREA= VEL= DEPTH=	*SECNO 23245.000	1 03NOV14 PAGE 35	SECNO Q TIME SLOPE	3301 HV CHANGED	3302 WARNING	3470 ENCROACHMENT	23245.000 2240.0 2.36 .000950	FLOW DISTRIB	STA= 1635 PER Q= AREA= VEL= DEPTH=	*SECNO 23335 23335.000 2240.0 2.37 .000568

			L-BANK ELEV R-BANK ELEV SSTA ENDST	610.10 609.90 1509.35 2059.96					611.00 610.10 1522.34 1923.83		
			OLOSS TWA ELMIN TOPWID	.01 161.9 606.70 550.62		2050. 2060. 7.6 .2			.00 169.3 607.70 401.50		
1833.			HL VOL WTN CORAR	.79 1052.4 .000		2000. 20 5.5 204.1 4.1		. 59	.23 1087.3 .000		1924.
1800. 9.6 49.6 1.5			HV AROB XNR ICONT	.01 1669.3 .110	54	1900. 25.5 673.3 6.7		KRATIO =	.02 1230.9 .110	77	1900. 19 8 35.3 35.3
1755. 1 263.5 4 1.0 9 5.9			EG ACH XNCH IDC	616.55 184.6 .060	L= 616.54	1800. .8 26.2 .0 683.3 .8 .8		LE RANGE,	* 616.78 132.3 .060	-= 616.77	1800. 17.2 386.6 3.9
1707. 26.1 3.2 425.1 3.7 1.4 6.3 8.9			WSELK ALOB XNL ITRIAL	.00 909.3 .110	CWSEL=	1785. 3 101 6		OF ACCEPTABLE	ELEV ROB * .00 388.3 .100 2	CWSEL=	1700. .6 30.2 .4 541.6 .0 9
1682. 31.7 32.8 255 11.4 2 8.9 10	NEF **		CRIWS QROB VROB XLOBR	.00 1311.9 79 2005.	5340.00	7.2 14.4 5.1 184.6 8 1.7 6.0 8.8		OUTSIDE	AT HIGHER .00 1018.1 .83 .640.	26070.00	16.6 32.3 2.0 8.3 1.0 6.4
10.5 247.5 302 1.0 1.0 5.2 8	24 WITH	37	CWSEL QCH VCH XLCH	616.54 309.7 1.68 2005.	SECNO= 2). 1730. 7 680.7 205 3.6 6		NCE CHANGE	25 , NEF 616.77 260.4 1.97 730.		1642. 14.9 1 5.1
1600 18.0 .8	.000 ** SEC	17:39:37	DEPTH QLOB VLOB XLOBL	9.84 523.4 .58 2005.	DISTRIBUTION FOR	. 154(23.5 . 23.5 . 8	. 000	: CONVEYANCE	** SEC 3 9.07 291.6 75 730.	UTION FOR	. 5.9 173.4 2.2
STA= 1576. PER Q= AREA= VEL= DEPTH=	*SECNO 25340.000	1 03NOV14 PAGE 36	SECNO Q TIME SLOPE	25340.000 2145.0 3.02 .000286	FLOW DISTRIB	STA= 1509 PER Q= AREA= VEL= DEPTH=	*SECNO 26070.000	3302 WARNING:	26070.000 1570.0 3.20 .000442	FLOW DISTRIBUTION FOR SECNO=	STA= 1522 PER Q= AREA= VEL= DEPTH=

TRAVISFW_DUP CWSEL= 615.71

FLOW DISTRIBUTION FOR SECNO= 23335.00

*SECNO 26840.000

.57 TRAVISFW_DUP 3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO =

	613.10	612.20	1449.64	1775.70	
	.01	175.2	609.80	326.06	
SEC 25**	.49	1110.3	000.	00.	
CHAN FM		426.1			
SEC 25 ROB;	617.29	106.3	090.	0	
TAKEN FM	00.	530.5	060.	2	
HER ELEVS	00.	553.9	1.30	770.	
O, WITH HI	617.24	642.0 304.1	2.86	770.	2.7
** TOP	7.44	642.0	1.21	.009	17.20.37
	26840.000	1500.0	3.33	.001248	. 03NOV1A

_____03NOV14____17:3 PAGE___37

	R-BANK ELE	SSTA	ENDST
55010	TWA	ELMIN	TOPWID
Ī	VOL	N L M	CORAR
¥	AROB	XNR	ICONT
EG	ACH	XNCH	IDC
WSELK	ALOB	XNL	ITRIAL
CRIWS	QROB	VROB	XLOBR
CWSEL	QCH	ACH VCH	XLCH
DEPTH	QLOB	VLOB	XLOBL
SECNO	0	TIME	SLOPE

E <

FLOW DISTRIBUTION FOR SECNO= 26840.00 CWSEL= 617.7

STA= 1450. 1490. 1642. 1658. 1750. 1760. 1776. 1776. AREA= 45.2 485.2 106.3 381.1 27.4 1.0 6 1.3 VEL= .6 1.3 2.9 1.4 1.0 .6 DEPTH= 1.1 3.2 6.6 4.1 2.7 1.1

*SECNO 27770.000

.62 3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO

	613.00	614.00	1282.67	1453.67
	.04	180.5	612.90	171.00
	1.77	1128.1	000.	00.
	.14	308.9	.100	0
	619.09	102.1	090.	0
01	00.			
	00.	660.4	2.14	930.
	618.95	456.5	4.47	930.
	6.05	383.1	1.99	930.
	27770.000	1500.0	3.42	.003234

FLOW DISTRIBUTION FOR SECNO= 27770.00 CWSEL= 618.95

STA= 1283. 1330. 1349. 1353. 1371. 1430. 1454. PER Q= 9.2 12.7 3.7 30.4 39.9 4.1 AREA= 93.3 78.7 20.6 102.1 262.2 46.7 VEL= 1.5 2.4 2.7 4.5 2.3 1.3 DEPTH= 2.0 4.1 5.1 5.7 4.4 2.0

*SECNO 27950.000

3301 HV CHANGED MORE THAN HVINS

. 55 3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO =

	.2	
	. 97	
	.72	
	620.29	Page 43
	00.	
	00.	
** ATC-26 **	619.57	
** ATC	6.27	
	27950.000	

613.40

23

614.40 1323.99 1404.67		L-BANK ELEV R-BANK ELEV SSTA ENDST					FQ		ITRACE				L-BANK ELEV R-BANK ELEV SSTA ENDST
181.0 613.30 80.68		OLOSS TWA ELMIN TOPWID					WSEL	575.7	CHNIM				OLOSS TWA ELMIN TOPWID
1130.0 .000 .00		HL VOL WTN CORAR					Ø		IBW				HL VOL WTN CORAR
88.1 .100 0		HV AROB XNR ICONT	CWSEL= 619.57	1405.			HVINS		ALLDC				HV AROB XNR ICONT
TRAVISFW_DUP 106.2 .060		EG ACH XNCH IDC		1400		NC BLW	METRIC		N N				EG ACH XNCH IDC
87.0 .090 2		WSELK ALOB XNL ITRIAL		59.1 18.1 18.1 106.2 86.3 86.3 8.3 3.2 5.9 3.0		ALAMANCE CO,	STRT		XSECH				WSELK ALOB XNL ITRIAL
273.4 3.10 180.		CRIWS QROB VROB XLOBR	27950.00	1353 .0 .4 .TDIR		CRIWS QROB VROB XLOBR							
886.5 8.34 180.	:37	CWSEL QCH VCH XLCH	SECN0=	13.5 50.7 4.0 3.6	:37	STUDY TRAVIS	NIN		PRFVS	-1		:37	CWSEL QCH VCH XLCH
340.1 3.91 180.	17:39:37	DEPTH QLOB VLOB XLOBL	BUTION FOR	4. 1335 14.7 2.0 2.0 1.3	17:39:37	R FIA CHED CR	DNI	2	IPLOT			17:39:37	DEPTH QLOB VLOB XLOBL
1500.0 3.43 .010678	1 03NOV14 PAGE 38	SECNO Q TIME SLOPE	FLOW DISTRIBUTION FOR	STA= 1324 PER Q= AREA= VEL= DEPTH=	1 03NOV14 PAGE 39	T1 FPMS BI T2 ENCROA(J1 ICHECK		J2 NPROF	15	-	DAGE 40	SECNO Q TIME SLOPE

*PROF 2 0

TRAVISFW_DUP

.00 .00 569.10 .0 .0 570.60 000 554.00 1254.40 .00 352.60 1607.00		200.000 .24 .05 562.40 6.5 1.9 560.40 000 555.90 1650.00 .00 200.00 1850.00	180.000 .54 .01 563.90 9.9 5.1 563.70 000 557.10 1372.00 .00 180.00 1552.00	120.000 .07		OLOSS L-BANK ELEV TWA R-BANK ELEV ELMIN SSTA TOPWID ENDST
. 0.	.50	200 .24 .000 .000	180 . 54 . 000 . 000	.07 53.2 .000		HL VOL WTN CORAR
(NEF) ** .42 150.8 .120	KRATIO =	1 TARGET= .17 .110 .110	1 TARGET= .20 566.9 .110	1 TARGET= ATC-2 ** .19 .00		HV AROB XNR ICONT
N-EFF FLOW 576.12 2249.2 .060	ABLE RANGE,	TYPE= 576.41 657.3 .060	TYPE= 576.96 615.9	TYPE= 1 ; OVBKS FM AT 3 577.04 0 1466.3 0 .060		EG ACH XNCH IDC
"AA"; NON- 575.70 793.7 .120	OF ACCEPTABLE	1850.0 576.32 1300.2 .090	1552.0 T 576.54 692.0	1998.0 C ATC-3 576.6		WSELK ALOB XNL ITRIAL
MOD BY SEC .00 .129.2 .86	OUTSIDE	1650.0 ATC-1 ** . 00 ! 177.5 ! 1.16	1372.0 .00 935.0 1.65 730.	1878.0 SIPEE RD; SE .00 .00 .00		CRIWS QROB VROB XLOBR
ON HAW R , 575.70 12175.1 5.41	'ANCE CHANGE	24 24 18 0.0	STATIONS= SEC ATC-2 ** 67 576.77 .5 2781.5 07 4.52 0. 730.	TONS= 1593 OS 576.85 5150.0 3.51 85.	:37	CWSEL QCH VCH XLCH
.200 CEHV= 274870.000 ** TOPO SEC (.000 21.70 50.0 945.7 .00 1.19	000 G: CONVEYANCE	* .4 .8	000 CHMENT STATION ** SEC AT 19.67 1433.5 2.07 730.	* • • • • • • • • • • • • • • • • • • •	17:39	DEPTH QLOB VLOB XLOBL
CCHV= *SECNO 2748 274870.000 13250.0 .00	*SECNO 120.000 3302 WARNING:	3470 ENCROACHMENT * 120.000 20 5150.0 222 .000648 3	*SECNO 850.000 3470 ENCROACHMENT * 850.000 19 5150.0 143 5150.7	*SECNO 935.000 3470 ENCROACHMENT * 935.000 18 5150.0 .09	1 03NOV14 PAGE 41	SECNO Q TIME SLOPE

ELCHD 558.00		WEIRLN		571.40 100000.00 1878.00 1998.00		564.90 564.70 1880.00 2000.00		565.10 567.00 1108.00 1278.00		L-BANK ELEV R-BANK ELEV SSTA ENDST	
ELCHU 558.00		ELTRD 577.40	00	.00 5.4 10 558.00 120.00		.04 5.6 558.10		.01 7.7 560.10 170.00		OLOSS TWA ELMIN TOPWID	
SS 3.24		ELLC 574.90	120.000	.41 54.1 .000		120.000 .06 56.1 .000		170.000 .86 .000 .000		HL VOL WTN CORAR	
BAREA 1050.00	- Shape	TRAPEZOID AREA 1061.	1 TARGET= ELREA=	.19		. 29 436.7 .110		. TARGET= .31 .120 .120		HV AROB XNR ICONT	
BWP 3.00	.00 TRAPEZOIDAL	BAREA 1050.	TYPE= 1	577.45 1484.4 .060		TYPE= 1 577.55 599.2 .060		TYPE= 1 578.42 518.4 .060		EG ACH XNCH IDC	
BWC 11.00	1998 ased on	QPR 5178.	1998.0 ELLEA=	577.03 0.000		2000.0 3 ** 577.07 440.2 .090		778.0 T) 577.80 102.5 100 . 100		WSELK ALOB XNL ITRIAL	
RDLEN.00	.00 STENCR= Submergence B	QWEIR 0.	. 1878.0 NON-EFFECTIVE,	OVBKS FM TOPO 6 .00 0 .0 7 .00		1880.0 CHAN FM ATC-3 6 .00 8 908.1 0 2.08		1108.0 NEF .00 1971.0 1.90 630.		CRIWS QROB VROB XLOBR	
COFQ 2.50	1878 Weir	н3	STATIONS=	R 1593; OVB 577.26 5150.0 3.47 26.		ONS= SEC; 577.2 3116. 5.2		STATIONS= * ATC-4 WITH 01 578.11 2.5 2956.5 17 5.70 80. 630.	37	CWSEL QCH VCH XLCH	
XKOR 1.60	STENCL IR FLO	EGLWC 577.05	ST	** SR 19.26 .00 .00	000	* • • • • • • • • • • • • • • • • • • •	000	20 -1 4 -111	17:39:	DEPTH QLOB VLOB XLOBL	
SB XK 1.00	*SECNO 961.000 BTCARD, BRIDGE PRESSURE AND WE	EGPRS 577.44	3470 ENCROACHMENT 3495 OVERBANK AREA	961.000 5150.0 .09	*SECNO 1020.000	3470 ENCROACHMENT 1020.000 19 5150.0 112 10 2	*SECNO 1650.000	3470 ENCROACHMENT 1650.000 18 5150.0 22 .14 2 .001595 6	1 03NOV14 PAGE 42	SECNO Q TIME SLOPE	

Page 46

	569.10 568.30 1460.00 1640.00	572.80 572.00 1525.00 1695.00	573.90 573.10 1475.00 1625.00	577.20 100000.00 2035.00 2110.00		L-BANK ELEV R-BANK ELEV SSTA ENDST
00	.01 12.4 562.90 180.00	.02 .02 19.3 566.60 170.00	00 .01 21.4 567.70 150.00	.03 23.1 569.00 75.00		OLOSS TWA ELMIN TOPWID
180.000	1.74 124.2 .000	170.000 2.71 188.2 .000	150.000 .98 208.6 .000	75.000 1.05 228.7 .000		HL VOL WTN CORAR
TARGET=		. TARGET= .33 570.8 .110	TARGET= .28 61.5 .110	TARGET= .35 .000		HV AROB XNR ICONT
TYPE= 1	80.18 542.9 .060	TYPE= 1 582.91 508.1 .060	TYPE= 1 583.90 505.8 .060	TYPE= 1 584.98 1063.5 .060		EG ACH XNCH IDC
1640.0 TX	34 10 10	1695.0 582.22 458.6 110	71 583.17 583.17 1018.0 110	77 0.0112 583.87 0.000		WSELK ALOB XNL ITRIAL
1460.0		1525.0 M ATC-5 ** .00 1225.8 2.15 1715.	1475.0 M ATC-5 ** .00 82.1 1.34 570.	2035.0 FOR NEF ** .00 .00 .00		CRIWS QROB VROB XLOBR
=SNOTT	* ATC-5 ** .01 579.91 9.9 2857.0 .96 5.26 75. 1175.	STATIONS= TOPO; CHAN FM 99 582.59 .0 2932.2 16 5.77 5.77	STATIONS= TOPO; CHAN FM 92 583.62 .3 2747.7 28 5.43 0.	S= MOD 84.63 065.0 4.76 660.	:37	CWSEL QCH VCH XLCH
O 2825.000 FNCROACHMENT STA	** AT 17.01 1909.9 1.96 1175.	NT ** 15. 992 2.	* .0 . \	* • • •	.000	DEPTH QLOB VLOB XLOBL
*SECNO 2825		*SECNO 4540.000 3470 ENCROACHMENT * 4540.000 15 5150.0 99 .34 2	*SECNO 5110.000 3470 ENCROACHMENT 5110.000 15 5150.0 232 5150.0 232	*SECNO 5770.000 3470 ENCROACHMENT 5770.000 15 5065.0 42 42 601558	*SECNO 5810.000 1 03NOV14 PAGE 43	SECNO Q TIME SLOPE

3301 HV CHANGED MORE THAN HVINS

	0
00 .29 .23.1 569.00	43.0
.56 45.000 586.00 .229.5 .000	00.
1 TARGET= 1 TARGET= 1.08 .000	0
LE RANGE, KRATI PE= 1 TARG 586.00 ELREA= 608.4 .060 .00	0
CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO = 2049.0 2094.0 TYPE= 1 TARGET= NON-EFFECTIVE, ELLEA= 586.00 ELREA= SEC ATC-7 **	2
HANGE OUTSIDE OF ACCE 2049.0 2094.0 NON-EFFECTIVE, ELLEA= SEC ATC-7 ** 5.0 .00 583.	40.
\circ \circ \circ \circ	40.
G: CONVEYANCE CHMENT STATIONS NK AREA ASSUME *** NC 87 15.30 50	40.
ž Š Š	.004932

576.70 576.70 2050.00 2093.00	ELCHD 567.00		WEIRLN	45.
.29 23.1 569.00 43.00	ELCHU 567.70		ELTRD	586.00
.10 229.5 .000	ss 00.		ELLC	580.70
1.08 .000 0	BAREA 520.00	. Shape	TRAPEZOID	AKEA 520.
585.37 608.4 .060	BWP 3.00	.00 TRAPEZOIDAL	BAREA	520.
583.50 .000 .000	BWC 43.00	:= 2094. Based on T	QPR	5019.
.00 .00 .00 .00 .40.	RDLEN .00	00 STENCR Ibmergence	QWEIR	57.
87 , SEC A 584.30 5065.0 8.33 40.	COFQ 2.50	2049 Weir	Н3	.24
** NC 15.30 .00 .00	GE XKOR 1.62	000 GE STENCL= WEIR FLOW	EGLWC	585.58
5810.000 5065.0 .42	SPECIAL BRID	*SECNO 5867. BTCARD, BRIDG PRESSURE AND	EGPRS	586.68
	** NC 87 , SEC ATC-7 ** 15.30 584.30 .00 583.50 585.37 1.08 .10 .29 .29 .29 .29 .29 .29 .29 .29 .29 .29 .23 .10 .20 .20 .20 .20 .20 .29 .23 .10 .20	** NC 87 , SEC ATC-7 ** 15.30	** NC 87 , SEC ATC-7 ** 15.30	** NC 87 , SEC ATC-7 ** 15.30

WEIRL	45			576.00 575.20 2050.00 2093.00
ELTRD	586.00			.00 23.2 569.00 43.00
ELLC	580.70	45.000	586.30	230.3 .000 .000
TRAPEZOID	AKEA 520.	1 TARGET=	ELREA=	. 89 . 000 2
BAREA	520.		586.30 ELREA=	586.64 670.8 .060
QPR	5019.	2094.0 TYPE=	ELLEA=	584.90 .000 2
QWEIR	57.	2049.0	NON-EFFECTIVE,	.00 .00 .57.
Н3	.24	=SNOI		585.75 5065.0 7.55 57.
EGLWC	585.58	HMENT STAT	K AREA ASS	16.75 .00 .57.
EGPRS	586.68	3470 ENCROACHMENT STATIONS	3495 OVERBANK AREA ASSUMED	5867.000 5065.0 .003382

1 03NOV14 17:39:37 PAGE 44

L-BANK ELEV	_	SSTA	ENDST
OLOSS	AWT	ELMIN	TOPWID
H	VOL	N L M	CORAR
¥	AROB	XNR	ICONT
EG	ACH	XNCH	IDC
WSELK	ALOB	XNL	ITRIAL
CRIWS	QROB	VROB	XLOBR
CWSEL	OCH OCH	VCH	XLCH
DEPTH	QLOB	VLOB	XLOBL
SECNO	0	TIME	SLOPE

*SECNO 5930.000

3301 HV CHANGED MORE THAN HVINS

573.90 572.30 2025.00 2135.00	574.70 573.10 2015.00 2155.00	577.40 576.70 1170.00 1330.00	576.50 576.50 1145.00 1305.00		L-BANK ELEV R-BANK ELEV SSTA ENDST	576.50
11 23.3 569.30 110.00	.03 23.9 570.10 140.00	.00 29.0 572.20 160.00	00 .00 31.5 571.50 160.00		OLOSS TWA ELMIN TOPWID	.01
110.000 .13 231.6 .000	140.000 .23 .23 .000	160.000 1.55 294.7 .000	160.000 .71 322.7 .000		HL VOL WTN CORAR	240.000 ATC-10**
TARGET= .33 604.5 .100	TARGET= .19 840.2 .100	TARGET= .18 333.4 .100	TARGET= .16 .1291.1 .110		HV AROB XNR ICONT	TARGET= CHAN FM .11
TYPE= 1 586.88 430.5 .060	TYPE= 1 587.18 421.0 .060	DE= 1 / LOB ** 588.73 448.1 .060	589.45 397.4 .060		EG ACH XNCH IDC	E= 1 FM RDWAY; 589.62 Page 49
2135.0 TYPE 1 NEF ROB ** 10 585.97 18 302.6 100 100 100	2155.0 ** 586.27 405.0 .100	1330.0 TYPE- HIGHER ELEV 1 587.66 860.2	1305.0 TYPE 588.59 164.7 .120		WSELK ALOB XNL ITRIAL	0 1255.0 TYPE= PORTIONS OF ROB F .00 588.85
2025.0 MOD FOR NE .00 1549.8 2.56 33.	2015.0 NEF ROB * .00 1964.8 2.34 2.34	1170.0 FOR NEF AT .00 609.2 1.83 1460.	.00 2740.6 2.12 700.		CRIWS QROB VROB XLOBR	1015.0 LOB & PORTJ
STATIONS= ATC-8 TRSF & 26.56 2.2 2517.0 2.9 5.85 33. 63.	STATIONS= 2 ATC-8 MOD FOR 586.99 .5 1996.7 4.74	NS= MOD F 588.55 2016.3 4.50 1460.	STATIONS= ATC-10 ** 79 589.29 .7 1784.7 42 4.49 0. 700.	37	CWSEL QCH VCH XLCH	NS= SEC;NEF 589.51
* -(1) -00	NT ** 798 798 22	NT ** 16. 134 2.	* .4 .0	17:39:	DEPTH QLOB VLOB XLOBL	N * 1 18 * *
3470 ENCROACHMENT 5930.000 17 4760.0 69 .43 2	*SECNO 6150.000 3470 ENCROACHMENT * 6150.000 16 4760.0 79 .44 1	*SECNO 7610.000 3470 ENCROACHMENT * 7610.000 16 4760.0 213 .57 2	*SECNO 8310.000 3470 ENCROACHMENT * 8310.000 17 4760.0 .63 1 .000959	1 03NOV14 PAGE 45	SECNO Q TIME SLOPE	*SECNO 8500.000 3470 ENCROACHMENT *- 8500.000 18

							ELEV	
576.50 1015.00 1255.00	576.70 581.00 1000.00 1240.00	ELCHD 571.60		WEIRLN 250.	576.70 581.00 980.00 1230.00		L-BANK EL R-BANK EL SSTA ENDST	576.60 576.60
32.4 571.50 240.00	32.7 571.60 240.00	ELCHU 571.60		ELTRD 587.70	.00 32.8 571.60 250.00		OLOSS TWA ELMIN TOPWID	0 33.0
332.0 .000 .00	240.000 .03 334.9 .000	ss .37		ELLC 586.50	250.000 .46 336.1 .000		HL VOL WTN CORAR	260.000 .01 339.1
лр 402.7 .110	.09 187.7 .110	BAREA 509.00	Shape	TRAPEZOID AREA 517.	* TARGET= .06 158.9 .110		HV AROB XNR ICONT	TARGET= .04 279.3
TRAVISFW_DUP 402.6 .060 0	TYPE= 1 589.65 745.2 .060	BWP 4.80	.00 TRAPEZOIDAL	BAREA 509.	PE= 1 ROADWAY * 590.12 768.1 .060		EG ACH XNCH IDC	PE= 1 590.13 413.9 Page 50
1599.3 .120	1240.0 TY 588.91 1614.3 .120	BWC 34.00	= 1230 Based on	QPR 2516.	1230.0 TY OF ROB FW 589.57 2259.4 .120		WSELK ALOB XNL ITRIAL	1220.0 TYPE 589.59 2520.4
530.9 1.32 190.	1000.0 ** .00 177.3 .94 .50.	RDLEN .00	.00 STENCR	QWEIR 2283.	980.0 PORTIONS .00 129.5 .81 .81		CRIWS QROB VROB XLOBR	960.0 .00 289.4
1606.4 3.99 190.	STATIONS= PRIVATE RD 589.56 2 2402.5 35 3.22	COFQ 2.50	980 , Weir	н3	STATIONS= 5 * TOPO WITH NEF; .46 590.06 1.4 1979.1 1.7 2.58 19. 19.	37	CWSEL QCH VCH XLCH	TONS= 590.09 1065.1
2622.7 1.64 190.	* 0 . 0	OGE XKOR 1.47	.000 OGE STENCL= O WEIR FLOW,	EGLWC 589.65		17:39:3	DEPTH QLOB VLOB XLOBL	000 HMENT STATIONS= 18.49 59C 3405.5 106
4760.0 .66	*SECNO 8550.000 3470 ENCROACHMENT * 8550.000 17 4760.0 218 .66 1	SPECIAL BRIDGE SB XK 1.10	*SECNO 8569.000 BTCARD, BRIDGE S PRESSURE AND WEI	EGPRS 591.55	3470 ENCROACHMENT 8569.000 18 4760.0 265 .67 1	1 03NOV14 PAGE 46	SECNO Q TIME SLOPE	*SECNO 8610.000 3470 ENCROACHMENT 8610.000 18. 4760.0 3405

960.00 1220.00		579.00 578.90 1520.00 1720.00	579.90 579.80 1515.00 1695.00	581.30 580.40 1415.00 1580.00		L-BANK ELEV R-BANK ELEV SSTA ENDST	583.40 583.10 1185.00 1350.00
571.60 260.00		.02 39.9 574.50	.02 42.0 575.40 180.00	.000 .00 45.0 576.70 165.00		OLOSS TWA ELMIN TOPWID	.01 51:1 578:50 165:00
000.	69.	200.000 .54 420.5 .000	180.000 .36 .000 .000	165.0 .68 472.5 .000		HL VOL WTN CORAR	165.000 1.49 532.3 .000
Р .100 0	KRATIO =	TARGET= .10 779.4 .110	TARGET= .14 476.2 .110	TARGET= .12 240.7 .100		HV AROB XNR ICONT	TARGET= .10 .100 .100
TRAVISFW_DUP .060 0	ACCEPTABLE RANGE,	PE= 1 590.70 503.9 .060	TYPE= 1 591.07 485.9 .060	PE= 1 / LOB ** 591.76 302.8 .060		EG ACH XNCH IDC	E= 1 593.26 297.8 .060 0 Page 51
.100 0	OF ACCEPTAB	1720.0 TYPE 590.05 956.0 .090	77 0.262 590.35 907.1 2	1580.0 TYPE= F HIGHER ELEV 1 591.03 987.9 .100		WSELK ALOB XNL ITRIAL	1350.0 TYPE: 216.8 .100
1.04	OUTSIDE	1520.0 .00 1208.3 1.55 1300.	.00 847.4 1.78 490.	1415.0 FOR NEF AT .00 416.8 1.73 740.		CRIWS QROB VROB XLOBR	1185.0 .00 2204.9 1.92 1630.
2.57	ANCE CHANGE	* ATC-12 ** .10 590.60 0.5 1781.2 85 3.53	STATIONS= TOPO ** 53 590.93 .1 1966.5 99 4.05 0. 490.	MENT STATIONS= ** ATC-13, MOD 14.93 591.63 1994.6 1213.6 2.02 4.01 740. 740.	37	CWSEL QCH VCH XLCH	IONS= -14 ** 593.16 1071.9 3.60 1630.
1.35 41.	000 : CONVEYANCE		* • • • • •	.000 HMENT STAT ** ATC 14.93 1994.6 2.02 740.	17:39:	DEPTH QLOB VLOB XLOBL	.000 HMENT STATIONS= ** ATC-14 ** 14.66 593. 348.3 1071 1.61 3.
.000298	*SECNO 9910.000	3470 ENCROACHMENT * 9910.000 16 4760.0 177 .82 1	*SECNO 10400.000 3470 ENCROACHMENT * 10400.000 15 4620.0 180 .87 1 .000869 4	*SECNO 11140.000 3470 ENCROACHMENT ** 11140.000 14 3625.0 19995 2	1 03NOV14 PAGE 47	SECNO Q TIME SLOPE	*SECNO 12770.000 3470 ENCROACHMENT 12770.000 14 3625.0 34 1.14 1

*SECNO 13900.000

3302 WARNING: CO 3470 ENCROACHMENT 3625.0 135 1.23 2 .001788 11 *SECNO 14320.000 3470 ENCROACHMENT 14320.000 14 3565.0 98	MEN 13	CE CH/ ONS= WITH 594. ⁴ 1419. 5.(113(113; CF 595. ² 595. ² 595. ²	OUTSIDE 1130.0 854.7 2.47 1130. 1130.	F ACCEPT 1270.0 4 ** 593.89 616.6 .110 .1136.0 ** 594.64 337.2	ABLE RANGE, TYPE= 1 594.65 282.1 000 0 TYPE= 1 284.7 .060	KRATIO = TARGET= .100 0 TARGET= TARGET= .331.4 .100	.69 .140.000 .000 .000 .000 .000 .99 .80.1	580.50 140.00 .000 .000	585.40 585.10 1130.00 1270.00 586.10 586.00
SECNO 14365.000 302 WARNING: C	000	NCE CHANGE	OUTSIDE	OF ACCEPTABLE		KRATIO =	1.43		
3470 ENCROACHMENT **14365.000 14 3565.0 1.26 .001595	IMENT STAT ** SR 14.26 .00 .00 45.	TT STATIONS= ** SR 1504; SEC / 14.26	1660.0 ATC-16 ** .00 .00 .00 .45.	1725.0 TY 594.98 .000	TYPE= 1 595.87 805.2 .060	TARGET= .30	65.000 .10 581.0 .000	.03 56.3 581.30 65.00	586.30 100000.00 1660.00 1725.00
1 03NOV14 PAGE 48	17:39:	37							
SECNO Q TIME SLOPE	DEPTH QLOB VLOB XLOBL	CWSEL QCH VCH XLCH	CRIWS QROB VROB XLOBR	WSELK ALOB XNL ITRIAL	EG ACH XNCH IDC	HV AROB XNR ICONT	HL VOL WTN CORAR	OLOSS TWA ELMIN TOPWID	L-BANK ELEV R-BANK ELEV SSTA ENDST
SPECIAL BRIDGE	щ								
SB XK .95	XKOR 1.44	COFQ 2.70	RDLEN.00	BWC 39.00	BWP 1.44	BAREA 639.00	ss 1.04	ELCHU 581.30	ELCHD 581.30
*SECNO 14385.000	000				ć L				

TRAVISFW_DUP	1725.00	Weir Submergence Based on TRAPEZOIDAL Shape
		3ased
	STENCR	ergence
	1660.00	Weir Subm
	BTCARD, BRIDGE STENCL=	PRESSURE AND WEIR FLOW,

WEIRLN 65.	586.30 100000.00 1660.00 1725.00	585.40 586.30 1635.00 1735.00	586.10 587.00 1300.00 1570.00	
ELTRD 595.10	.00 56.3 581.30 65.00	.00 .00 56.4 581.50 100.00	.05 58.3 582.20 270.00	
ELLC 593.80	65.000 .31 581.4 .000	.000.000 .07 .000 .000	2.15 270.000 .000 .000 .000	
TRAPEZOID AREA 632.	TARGET= .28 .000	TARGET= .26 .100 .00	KRATIO = TARGET= .03 1632.4 .090	
BAREA T	596.18 842.6 .060	E= 1 596.26 432.2 .060	E RANGE, E= 1 596.52 426.0 .060	
QPR 3361.	1725.0 TYPE= WITH NEF ** 595.34 5.000	1735.0 TYPE= 595.58 5 405.0	F ACCEPTABLE 1570.0 TYPE= 595.91 5 573.6 .110	
QWEIR 170.	1660.0 OVBKS FM TOPO, .90 5.0 .23 .00 .23	1635.0 17 ** .00 571.9 2.19 50.	OUTSIDE O 1300.0 1751.6 1.07 445.	
н3		STATIONS= TOPO; CHAN FM 49 595.99 6 2159.5 06 5.00	ANGE 49 5.5	37
EGLWC 595.87	HMENT STAT ** SR 14.60 .00 .21.	⊢* 4 € 6 ° 5 ° 5 ° 5 ° 5 ° 5 ° 5 ° 5 ° 5 ° 5 °	0.000 G: CONVEYANCE CH CHMENT STATIONS= ** ATC-17 ** 14.29 596. 456.9 836 456.9 836 445.	17:39:37
EGPRS 596.26	3470 ENCROACHMENT STATIONS= ** SR 1504; 14385.000 14.60 595 3565.0 .0 356 1.26 .00	*SECNO 14435.000 3470 ENCROACHMENT * 14435.000 14 3565.0 83 1.26 2	*SECNO 14880.000 3302 WARNING: CO 3470 ENCROACHMENT * 14880.000 14 3045.0 45 1.36 45	1 03NOV14 PAGE 49

*SECNO 15580.000

.56 3302 WARNING: CONVEYANCE CHANGE OUTSIDE OF ACCEPTABLE RANGE, KRATIO =

L-BANK ELEV R-BANK ELEV SSTA ENDST

OLOSS TWA ELMIN TOPWID

HL VOL WTN CORAR

HV AROB XNR ICONT

EG ACH XNCH IDC

WSELK ALOB XNL ITRIAL

CRIWS QROB VROB XLOBR

CWSEL QCH VCH XLCH

DEPTH QLOB VLOB XLOBL

SECNO Q TIME SLOPE

							ELEV	
588.10 589.00 1345.00 1555.00			589.30 589.10 1368.84 1497.00		593.10 592.00 1265.00 1415.00		L-BANK EL R-BANK EL SSTA ENDST	595.60 595.80 2030.00
. 02 61.6 584.20 210.00			.21 63.4 585.50 128.16		.000 .10 69.0 589.50 150.00		OLOSS TWA ELMIN TOPWID	. 04 75.2 591.10
210.000 .23 630.7 .000		.38	130.000 .68 .000 .000	2.10	3.68 681.6 .000		HL VOL WTN CORAR	180.000 2.26 727.4 .000
TARGET= .08 1059.4 .090		KRATIO =	TARGET= .61 .100 .100	KRATIO =	TARGET= .12 933.0 .100		HV AROB XNR ICONT	TARGET= .22 550.9 .110
TYPE= 1 596.77 368.2 .060		3LE RANGE,	TYPE= 1 597.66 230.2 .060	ILE RANGE,	TYPE= 1 601.44 287.1 .060		EG ACH XNCH IDC	PE= 1 603.73 332.3 .060 Page 54
1555.0 TYPI ATC-17 ** 596.06 151.4		OF ACCEPTABLE	1497.0 TT 596.52 282.3 .100	OF ACCEPTABLE	1415.0 TY 600.64 78.6 .100		WSELK ALOB XNL ITRIAL	2210.0 TYPE: *** 602.72 249.0 .090
45.0 FM SEC .00 1673.5 1.58 550.		OUTSIDE	.00 369.0 2.67 450.	OUTSIDE	1265.0 .00 1827.0 1.96 1760.		CRIWS QROB VROB XLOBR	2030.0 FOR NEF LOB .00 878.1 1.59
STATIONS= 13 TOPO SEC; CHAN 48 596.68 .2 1179.3 27 3.20 0. 700.	THAN HVINS	ANCE CHANGE	ENT STATIONS= ** ATC-18 ** 11.55 597.05 880.5 1795.5 3.12 7.80 450.	ANCE CHANGE	rrons= C-19 ** 601.32 1110.8 3.87 1760.	:37	CWSEL QCH VCH XLCH	00 ENT STATIONS= ** ATC-20, MOD F 12.42 603.52 568.6 1598.3 2.28 4.81
* -2 .0	MORE	: CONVEYANCE	HMENT STA ** AT 11.55 880.5 3.12 450.	. 000 : CONVEY	HMENT STATIONS= ** ATC-19 ** 11.82 601.3 107.1 1110 1.36 3.8 1760. 1760	17:39	DEPTH QLOB VLOB XLOBL	.000 HMENT STAT ** ATC 12.42 568.6 2.28
3470 ENCROACHMENT 15580.000 12 3045.0 19 1.44 1 1.44 7	*SECNO 16030.000 3301 HV CHANGED	3302 WARNING:	3470 ENCROACHMENT 16030.000 11 3045.0 888 1.46 3	*SECNO 17790.000 3302 WARNING: C	3470 ENCROACHMENT 17790.000 11 3045.0 10 1.64 1	1 03NOV14 PAGE 50	SECNO Q TIME SLOPE	*SECNO 19430.000 3470 ENCROACHMENT * 19430.000 12 3045.0 56

2210.00	597.30 597.50 2050.00 2220.00	598.50 598.70 1885.00 2145.00	599.30 599.00 1178.00 1413.00		L-BANK ELEV R-BANK ELEV SSTA ENDST		603.10 602.80 1200.00
180.00	000 78.4 592.80 170.00	.02 81.7 594.00 260.00	.000 .01 81.9 594.10 235.00		OLOSS TWA ELMIN TOPWID		.03 82.2 598.40
00.	170.000 1.32 748.8 .000	260.000 .76 .000 .000	235.0 .02 773.2 .000		HL VOL WTN CORAR	.46	225.000 NOT CHG** .07 .000
0 41	TARGET= 770.6 .110	TARGET= .07 319.9 .110	TARGET= .04 90.9 .110		HV AROB XNR ICONT	KRATIO =	1 TARGET= CHAN; STA NG .11 120.4 .110
TRAVISFW_DUP 0	TYPE= 1 605.06 322.2 .060	TYPE= 1 605.84 313.4 .060	PE= 1 ROB ** 605.87 246.2 .060		EG ACH XNCH IDC	LE RANGE,	E= ON NEW 605.96 185.7 .060 Page 55
່ ແ	2220.0 TY 20 ** 604.34 105.8 .090	2145.0 TY 20 ** 605.21 1113.7 .100	1413.0 TYPE= 0-A AND NEF ROB 605.27 60 1334.3 2		WSELK ALOB XNL ITRIAL	OF ACCEPTABLE	1425.0 XLCH BA 605.31 731.3
1640.	ONS= 2050.0 SEC; CHAN FM ATC-2 604.87 1475.7 1370.8 4.58 1.78 800.	85.0 FM ATC- 00 390.4 1.22 740.	1178.0 BY SEC 20 .00 74.9 .82 .82		CRIWS QROB VROB XLOBR	CHANGE OUTSIDE O	.200.0 FM 21030 .00 181.9 1.51
1640.	STATIONS= TOPO SEC; CH 07 604.87 .5 1475.7 88 4.58 0.	STATIONS= 18 TOPO SEC; CHAN 77 605.77 .0 983.7 38 3.14 0. 740.	STATIONS= TOPO SEC, MOD 73 605.83 .3 562.8 27 2.29 0. 60.	:37	CWSEL QCH VCH XLCH		STATIONS= 1 TOPO W/ OVBKS 46 605.86 .4 697.7 99 3.76
1640.	* • ∞ • ○	* • 9 • 0	* . \	USED 17:39	DEPTH QLOB VLOB XLOBL	.000 :: CONVEYANCE	* ·LO •
.001694	*SECNO 20230.000 3470 ENCROACHMENT 20230.000 12 3045.0 19 1.85 1	*SECNO 20970.000 3470 ENCROACHMENT 20970.000 111 2910.0 153 1.95 1	1490 NH CARD USED #SECNO 21030.000 3470 ENCROACHMENT # 21030.000 11 2335.0 169 1.95 1	1490 NH CARD 1 03NOV14 PAGE 51	SECNO Q TIME SLOPE	*SECNO 21075. 3302 WARNING:	3470 ENCROACHMENT * 21075.000 7 2335.0 145 1.96 1

1425.00		601.30 601.00 1160.00 1350.00		601.30 601.00 1200.00 1360.00					L-BANK ELEV R-BANK ELEV SSTA ENDST	600.70 600.70 1210.00 1360.00			02.009
225.00		.00 82.3 598.00 190.00		. 01 82.8 598.00 160.00			00		OLOSS TWA ELMIN TOPWID	.04 82.9 598.00 150.00		00	.01
00.	1.60	. 01 775.5 .000		160.000 .12 .78.8 .000		.53	150.000		HL VOL WTN CORAR	. 03 779.2 .000		160.000	1.23
0	KRATIO =	TARGET= .09 9.3 .110		.11 54.8 .110		KRATIO =	TARGET=		HV AROB XNR ICONT	.21 .233.9 .110		TARGET=	396.1
TRAVISFW_DUP 0	3LE RANGE,	TYPE= 1 N FM 20-A ** 605.98 671.0 .060		TYPE= 1 606.11 682.7 .060		ILE RANGE,	TYPE= 1		EG ACH XNCH IDC	606.19 172.5 .060		TYPE= 1	607.43 204.9 Page 56
. 2	OF ACCEPTABLE	1350.0 ROB; CHA 605.31 442.4 .100		1360.0 TY LOB ** 605.44 262.5 .100		OF ACCEPTABLE	1360.0 TY 21 **		WSELK ALOB XNL ITRIAL	605.45 384.0 .100		1755.0 TY	606.45 349.0
45.	OUTSIDE	1160.0 MOD BY 20A .00 4.7 .51		1200.0 EXTENDED ON LO 00 .00 .1 52.2 86 .95 5. 135.		CHANGE OUTSIDE (1210.0 W/CHAN FM SEC		CRIWS QROB VROB XLOBR	.00 518.6 2.22 20.		1595.0	.00
165.	ANCE CHANGE	STATIONS= TOPO; OVBKS 89 605.89 .6 1794.7 21 2.67 0. 10.		CONS= 20-A 606. 1950 13.			STATIONS= * SEC 20-A W/C	37	CWSEL QCH VCH XLCH	605.98 887.8 5.15 20.		TIONS=	607.27 901.2
45.	5.000 5: CONVEYANCE	* • • • -	000.	* · N · M	000.	: CONVEYANCE		17:39:	DEPTH QLOB VLOB XLOBL	7.98 928.6 2.42 20.	000.	HMENT STAT	5.27 607. 751.3 901
.002229	*SECNO 21085 3302 WARNING	3470 ENCROACHMENT 21085.000 7 2335.0 53 1.96 1	*SECNO 21250.000	3470 ENCROACHMENT 21250.000 8 2335.0 33 1.98 1 1.98 1	*SECNO 21270.000	3302 WARNING:	3470 ENCROACHMENT	1 03NOV14 PAGE 52	SECNO Q TIME SLOPE	21270.000 2335.0 1.98	*SECNO 21750.000	3470 ENCROACHMENT	21750.000

1595.00 1755.00		603.90 603.90 1602.00 1742.00		606.50 606.50 1645.00 1765.00				L-BANK ELEV R-BANK ELEV SSTA ENDST		606.50 606.50 1665.00 1725.00
598.00 160.00		.06 87.0 601.20 140.00	000	.00 88.6 603.80 120.00				OLOSS TWA ELMIN TOPWID		.21 88.8 604.30 60.00
000.	. 65	** 140.000 801.6 .000	120.000	2.49 809.6 .000				HL VOL WTN CORAR	69.	60.000 .89 .000 .000 .00
. 110 0	KRATIO =	TARGET= NEF LOB *31 250.2 .100	TARGET=	.31 286.3 .100				HV AROB XNR ICONT	KRATIO =	TARGET= .83 102.4 .100
TRAVISFW_DUP .060 0	3LE RANGE,	TYPE= 1 CHAN FM 21; 609.50 172.8 .060	TYPE= 1	11 ** 611.99 169.9 .060				EG ACH XNCH IDC	LE RANGE,	TYPE= 1 613.09 174.2 .060
.100	OF ACCEPTABLE	1742.0 T	765.0	FM ATC 611.22 186.8 .100				WSELK ALOB XNL ITRIAL	OF ACCEPTABLE	1725.0 TYPE 611.77 96.9 .100
1.72 480.	OUTSIDE	23 00 7 44 0.	45.0	SEC 23; CHAN .00 803.6 2.81 530.				CRIWS QROB VROB XLOBR	OUTSIDE	1665.0 .00 387.6 3.79 90.
4.40	ANCE CHANGE	STATIONS= 1602.0 TOPO, ADJ. BASED ON 609.19 611 77 6.03 2.000.00	STATIONS=	TOPO MOD BY 8 611.68 5 1015.8 6 5.98		THAN HVINS	:37	CWSEL QCH VCH XLCH	ANCE CHANGE	STATIONS= .96 612.26 3.6 1488.8 .75 8.55 10. 140.
2.15	.000 :: CONVEYANCE	* .0 .0		** TO 7.88 515.5 2.76 530.	000.	CHANGED MORE	17:39:	DEPTH QLOB VLOB XLOBL	: CONVEYANCE	HMENT STAN 7.96 363.6 3.75 210.
2.03 .001987	*SECNO 22440.000	3470 ENCROACHMENT * 22440.000 7 2335.0 68 2.07 2	*SECNO 22970.000	22970.000 2335.0 2.11 .004707	*SECNO 23110.000	3301 HV CHAN	1 03NOV14 PAGE 53	SECNO Q TIME SLOPE	3302 WARNING:	3470 ENCROACHMENT 23110.000 7 2240.0 36 2.11 3

3301 HV CHANGED MORE THAN HVINS

*SECNO 23160.000

		606.50 100000.00 1679.00 1707.00		ELCHD 604.70						L-BANK ELEV R-BANK ELEV SSTA ENDST	WEIRLN	28.			606.50 100000.00 1679.00 1707.00
00		.35 88.9 1 604.70 28.00		ELCHU 604.60						OLOSS TWA ELMIN TOPWID	ELTRD	615.20	00		.00 88.9 10 604.60 28.00
28.000	612.60	.62 811.5 .000		98.			1.53			HL VOL WTN CORAR	ELLC	611.60	28.000	615.50	1.67 811.8 .000
. TARGET=	ELREA=	1.70 .000 0		BAREA 189.00			KRATIO =	Shape		HV AROB XNR ICONT	TRAPEZOID	AKEA 189.	TARGET=	ELREA=	.96.
TYPE= 1	612.60	23 ** 614.06 214.3 .060		BWP 1.00	00.		LE RANGE,	TRAPEZOIDAL		EG ACH XNCH IDC	BAREA	189.	TYPE= 1	615.20	615.72 284.5 .060 0 Page 58
T707.0	ELLEA=	MOD BY SEC 2 611.99 .000		BWC 28.00	= 1707		OF ACCEPTABLE	Based on T		WSELK ALOB XNL ITRIAL	QPR	2220.	1707.0 TY	ELLEA=	23 ** 614.36 .000
1679.0	EFFECTIVE,	ATC-22,		RDLEN.00	00 STENCR		OUTSIDE	Submergence		CRIWS QROB VROB XLOBR	QWEIR	17.	1679.0	\cup	.00 .00 .00 .00 .41.
STATIONS=	ASSUMED NON-EFFECTIVE	1500; SEC 612.36 2240.0 10.45 50.		COFQ 2.70	= 1679.00	THAN HVINS	ANCE CHANGE	Weir	37	CWSEL QCH VCH XLCH	H3	.43	STATIONS=	ASSUMED NON-EFFE	1500; OVBKS 614.76 2240.0 7.87 41.
	AREA	** SR 1 7.66 .0 .00 50.)GE	XKOR 1.57	ENCL	CHANGED MORE 1	GONVEYANCE	AND WEIR FLOW,	17:39:3	DEPTH QLOB VLOB XLOBL	EGLWC	614.27		AREA	** SR 10.16 .00 .00 41.
3470 ENCROACHMENT	3495 OVERBANK	23160.000 2240.0 2.11 .017391	SPECIAL BRIDGE	SB XK 1.25	*SECNO 23201.000 BTCARD, BRIDGE ST	3301 HV CHAN	3302 WARNING:	PRESSURE AND	1 03NOV14 PAGE 54	SECNO Q TIME SLOPE	EGPRS	615.78	3470 ENCROACHMENT	3495 OVERBANK	23201.000 2240.0 2.12 .007406

*SECNO 23245.000

³³⁰¹ HV CHANGED MORE THAN HVINS

2.94
KRATIO =
RANGE,
ACCEPTABLE
0F
OUTSIDE
CHANGE
CONVEYANCE
WARNING:
3302

606.60 606.60 1635.00 1755.00	606.70 606.70 1610.00 1790.00		L-BANK ELEV R-BANK ELEV SSTA ENDST		610.10 609.90 1745.00 1945.00		611.00 610.10 1600.00
300 17 89.0 604.40 120.00	.01 89.3 604.50 180.00		OLOSS TWA ELMIN TOPWID		.00 .00 98.1 606.70 200.00		00 .00 101.5 607.70
120.000 .08 812.5 .000	180.000 .06 815.2 .000		HL VOL WTN CORAR		200.000 1.17 884.4 .000		250.000 .34 .000
TARGET= .10 438.4 .110	TARGET= .05 676.2 .110		HV AROB XNR ICONT		TARGET= .04 1192.7 .110		TARGET= .02 1174.5
TYPE= 1 615.98 262.1 .060	TYPE= 1 616.05 262.4 .060		EG ACH XNCH IDC		F= 1 617.22 198.2 .060		E= 1 617.57 144.8 .060 Page 59
1755.0 TYI 615.58 417.5 .110	790.0 ** 615.71 548.4		WSELK ALOB XNL ITRIAL		1945.0 TYPE= 616.54 6 130.2 .110		1850.0 TYPE= ELEV ROB ** 616.77 65 247.6 .100 Pa
1635.0 FM 21 ** .00 675.2 1.54	1610.0 TRANSFERRED .00 851.8 1.26 90.		CRIWS QROB VROB XLOBR		1745.0 EF ** .00 1498.5 1.26 2005.		1600.0 AT HIGHER 1.00 1059.2
STATIONS= SEC 23; OVBK 48 615.88 .9 898.8 60 3.43	STATIONS= PREVIOUS SEC 49 615.99 .1 719.1 22 2.74 0.	37	CWSEL QCH VCH XLCH		STATIONS= * SEC 24 WITH N.48 617.18 0.2 516.3 0.0 2.61		CONS= 25, NEF 617.55 288.4 1.99
* ·D ·4	* · O · O	17:39:	DEPTH QLOB VLOB XLOBL	000.	HMENT STAT ** SEC 10.48 130.2 1.00 2005.	000	27
3470 ENCROACHMENT *- 23245.000 11 2240.0 66 2.12 1	*SECNO 23335.000 3470 ENCROACHMENT 23335.000 11 2240.0 666 2.14 1	1 03NOV14 PAGE 55	SECNO Q TIME SLOPE	*SECNO 25340.000	3470 ENCROACHMENT 25340.000 10 2145.0 13(2.49 1 1.000627 200	*SECNO 26070.000	3470 ENCROACHMENT 26070.000 9 1570.0 222

						> >					
1850.00		613.10 612.20 1530.00 1730.00		613.00 614.00 1327.00 1427.00		L-BANK ELEV R-BANK ELEV SSTA ENDST					613.40 614.40 1330.00 1400.00
250.00		000 .01 105.1 609.80 200.00		000 .05 108.3 612.90 100.00		OLOSS TWA ELMIN TOPWID			COC	000	.15 108.7 613.30 70.00
00.	. 58	200.000 SEC 25** 44 928.7 .000	65.	1.62 944.4 .000		HL VOL WTN CORAR		. 65	20 000	7.0.	.83 946.1 .000
0 dr	KRATIO =	TARGET= ;; CHAN FM .05 364.9 .100	KRATIO =	TARGET= .18 281.9 .100		HV AROB XNR ICONT		KRATIO =	TABCETL	AKGE =	.56 102.1 .100
TRAVISFW_DUP 0	SLE RANGE,	TYPE= 1 M SEC 25 ROB; 618.02 118.0 .060	ILE RANGE,	TYPE= 1 ** 619.69 112.3 .060		EG ACH XNCH IDC		ACCEPTABLE RANGE,	1	II	620.68 116.1 .060
. 7	OF ACCEPTABLE RANGE,	1730.0 TAKEN F 617.24 467.3	OF ACCEPTABLE	1427.0 SEC 26 618.95 125.5		WSELK ALOB XNL ITRIAL		OF ACCEPTAB	1400 O TVBE		619.57 95.1 .090 2
640.	OUTSIDE	1530.0 HIGHER ELEVS .00 510.3 1.40 770.		1327.0 NEF; CHAN FM 656.1 2.33 930.		CRIWS QROB VROB XLOBR		OUTSIDE	1330 0	T220.0	.00 292.6 2.87 180.
730.	ANCE CHANGE	IS= WITH 117.97 339.7 2.88 770.	0 CONVEYANCE CHANGE OUTSIDE	STATIONS= TOPO, WITH NI 61 619.51 .6 528.3 52 4.71 0. 930.	:37	CWSEL QCH VCH XLCH		ANCE CHANGE	TONIC	SIALIUNS= ATC-26 **	620.12 859.6 7.41 180.
730.	.000 : CONVEYANCE	* .0 .0	8	* • L∩ • C∩	17:39	DEPTH QLOB VLOB XLOBL	000	CONVEYANCE		- 42	m ·lac
.000401	*SECNO 26840.000	3470 ENCROACHMENT * 26840.000 8 1500.0 65 2.78 1 .001101 6	*SECNO 27770.000	3470 ENCROACHMENT 27770.000 6 1500.0 31 2.86 2 2.86 9	1 03NOV14 PAGE 56	SECNO Q TIME SLOPE	*SECNO 27950.000	3302 WARNING:	2470 ENCBOACUMENT	D4/O ENCROPOR	27950.000 1500.0 2.87 .007474

17:39:37

_ 03NOV14 PAGE 57 THIS RUN EXECUTED 03NOV14

 Version 4.6.2; May 1991

NOTE- ASTERISK (*) AT LEFT OF CROSS-SECTION NUMBER INDICATES MESSAGE IN SUMMARY OF ERRORS LIST

TRAVIS CR

SUMMARY PRINTOUT

0	13250.00 13250.00	5150.00 5150.00	5150.00 5150.00	5150.00 5150.00	5150.00 5150.00	5150.00 5150.00	5150.00 5150.00	5150.00 5150.00	5150.00 5150.00	5150.00 5150.00	5065.00
10*KS	10.74	2.59	9.19	8.38	8.20	10.36	11.78	15.63	18.28 18.20	9.71 16.23	18.34 15.58
ELLC	000.	000.	000	000	574.90 574.90	000	000.	86.	000	000	88.
ELMIN	554.00 554.00	555.90 555.90	557.10 557.10	558.00	558.00	558.10 558.10	560.10 560.10	562.90 562.90	566.60 566.60	567.70 567.70	569.00 569.00
EG	576.12 576.12	576.36 576.41	576.75 576.96	576.83 577.04	577.23 577.45	577.29 577.55	577.99	579.62 580.18	582.52 582.91	583.30 583.90	584.26 584.98
CWSEL	575.70 575.70	576.32 576.24	576.54 576.77	576.63 576.85	577.03 577.26	577.07 577.26	577.80 578.11	579.34 579.91	582.22 582.59	583.17 583.62	583.87 584.63
SECNO	274870.000 274870.000	120.000	* 850.000 850.000	935.000	961.000 961.000	1020.000 1020.000	1650.000 1650.000	2825.000 2825.000	4540.000 4540.000	5110.000 5110.000	5770.000
		42	75								

17:39:37

1 03NOV14 PAGE 58

O	5065.00	5065.00 5065.00	4760.00 4760.00	4620.00 4620.00	3625.00 3625.00	3625.00 3625.00	3625.00 3625.00	3565.00 3565.00	3565.00								
10*KS	59.81 49.32	40.72	10.94	7.48	14.02	11.45	8.54	6.07	2.90	2.78	5.42 6.31	7.91	12.26	8.08	15.18	40.60	15.88 Page 62
ELLC	000.	580.70 580.70	000.	000	000	000	000	000.	586.50 586.50	000.	000	000	000	000.	000.	000.	00.
ELMIN	569.00 569.00	569.00	569.30	570.10 570.10	572.20 572.20	571.50 571.50	571.50 571.50	571.60 571.60	571.60 571.60	571.60 571.60	574.50 574.50	575.40 575.40	576.70 576.70	578.50 578.50	580.50 580.50	581.20 581.20	581.30
EG	584.71 585.37	585.89	586.16 586.88	586.38 587.18	587.88	588.77 589.45	588.97 589.62	589.01 589.65	589.61 590.12	589.62 590.13	590.13 590.70	590.46 591.07	591.17 591.76	592.79 593.26	594.04 594.65	595.17 595.74	595.32
CWSEL	583.50 584.30	584.90 585.75	585.97 586.56	586.27 586.99	587.66 588.55	588.59 589.29	588.85 589.51	588.91 589.56	589.57 590.06	589.59 590.09	590.05 590.60	590.35 590.93	591.03 591.63	592.71 593.16	593.89	594.64 595.28	594.98
SECNO	5810.000 5810.000	5867.000 5867.000	5930.000 5930.000	6150.000 6150.000	7610.000 7610.000	8310.000 8310.000	8500.000 8500.000	8550.000 8550.000	8569.000 8569.000	8610.000 8610.000	9910.000 9910.000	10400.000 10400.000	11140.000 11140.000	12770.000 12770.000	13900.000 13900.000	14320.000 14320.000	14365.000
	* *		4:						*		4¢		*		*	*	*

3565.00		ø	3565.00 3565.00	3565.00 3565.00	3045.00 3045.00	3045.00 3045.00	3045.00 3045.00	3045.00 3045.00	3045.00	3045.00	2910.00 2910.00	2335.00 2335.00						
TRAVISFW_DUP 00 15.95		10*KS	16.35 14.36	10.50	1.64	8.93	64.59	8.80	22.39 16.94	16.08 16.00	7.54	4.74	18.35 22.29	9.55	9.04	22.65 34.23	19.23	57.60 46.91 Page 63
TR.		ELLC	593.80	000	000.	000	000.	000.	000	000.	000.	000.	000.	000	000	000	000	000.
581.30		ELMIN	581.30 581.30	581.50 581.50	582.20 582.20	584.20 584.20	585.50 585.50	589.50 589.50	591.10 591.10	592.80 592.80	594.00 594.00	594.10 594.10	598.40 598.40	598.00	598.00	598.00	598.00	601.20 601.20
595.87		EG	595.65 596.18	595.74 596.26	595.93 596.52	596.16 596.77	597.28 597.66	600.72	602.97 603.73	604.50 605.06	605.27 605.84	605.30	605.37	605.39	605.52 606.11	605.55 606.19	606.55 607.43	608.76
595.56	17:39:37	CWSEL	595.34 595.90	595.58 595.99	595.91 596.49	596.06 596.68	596.52 597.05	600.64 601.32	602.72 603.52	604.34 604.87	605.21 605.77	605.27	605.31 605.86	605.31 605.89	605.44 606.00	605.45 605.98	606.45 607.27	608.46 609.19
14365.000	03NOV14 E 59	SECNO	14385.000 14385.000	14435.000 14435.000	14880.000 14880.000	15580.000 15580.000	16030.000 16030.000	17790.000 17790.000	19430.000 19430.000	20230.000 20230.000	20970.000 20970.000	21030.000 21030.000	21075.000 21075.000	21085.000 21085.000	21250.000 21250.000	21270.000 21270.000	21750.000 21750.000	22440.000 22440.000
4:	1 PAGE				* *	* *	* *	4: 4:	- ‡¢				* *	*		* *		* *

2335.00		Ø	2240.00 2240.00	2240.00 2240.00	2240.00 2240.00	2240.00 2240.00	2240.00 2240.00	2145.00 2145.00	1570.00 1570.00	1500.00 1500.00	1500.00 1500.00	1500.00 1500.00	
45.05		10*KS	118.46 91.73	201.96 173.91	83.65	9.50	5.68	2.86	4.42	12.48	32.34 31.55	106.78 74.74	
000.		ELLC	000	88.	611.60 611.60	000	000	000	000	000	000.	000	
603.80		ELMIN	604.30	604.70 604.70	604.60 604.60	604.40 604.40	604.50 604.50	606.70 606.70	607.70	609.80	612.90 612.90	613.30 613.30	
611.47 611.99		EG	612.74 613.09	613.86 614.06	615.40 615.72	615.68 615.98	615.76 616.05	616.55 617.22	616.78 617.57	617.29 618.02	619.09 619.69	620.29 620.68	
611.22 611.68	17:39:37	CWSEL	611.77 612.26	611.99 612.36	614.36 614.76	615.58 615.88	615.71 615.99	616.54 617.18	616.77 617.55	617.24 617.97	618.95 619.51	619.57 620.12	17:39:37
22970.000 22970.000	03NOV14 5E 60	SECNO	23110.000 23110.000	23160.000 23160.000	23201.000 23201.000	23245.000 23245.000	23335.000 23335.000	25340.000 25340.000	26070.000 26070.000	26840.000 26840.000	27770.000	27950.000 27950.000	03NOV14 iE 61
	1 PAGE		* *		4: 4:	* *			*	* *	* *	* *	1 PAGE

TRAVIS CR

SUMMARY PRINTOUT

TOPWID	352.60 352.60
ENDST	1607.00 1607.00
STCHR	1548.00 1548.00
STCHL	1430.00 1430.00
SSTA	1254.40 1254.40
CWSEL	575.70 575.70
SECNO	274870.000 274870.000

PWI PWI 84. 60.	330. ENDS 316. 305. 307.	50 90 00	тсн 56. 56.	S: S: 111(111)	SSTA 1132.02 1145.00 1	88.55 1170.00 1 7:39:37 WSEL SSTA 88.59 1132.02 1 89.29 1145.00 1 88.85 980.78 1
165.00 110.00 344.03 140.00 197.28 160.00	2155.00 2135.00 2251.18 2155.00 1351.12 1330.00	2081.00 2081.00 2081.00 2081.00 1285.00	2055.00 2055.00 2055.00 2055.00 1257.00		1990.00 2025.00 1907.15 2015.00 1153.84 1170.00	585.97 1990.00 586.56 2025.00 586.27 1907.15 586.99 2015.00 587.66 1153.84 588.55 1170.00
43.00 43.00 43.00 43.00	2093.00 2093.00 2093.00 2093.00	2093.00 2093.00 2093.00 2093.00	2050.00 2050.00 2050.00 2050.00	00 00	2050.00 2050.00 2050.00 2050.00	583.50 2050.00 584.30 2050.00 584.90 2050.00 585.75 2050.00
354.43 150.00 75.00 75.00	1719.95 1625.00 2110.00 2110.00	1619.00 1619.00 2110.00 2110.00	1585.00 1585.00 2035.00 2035.00		1365.52 1475.00 2035.00 2035.00	1010 1010
235.52 170.00	1728.87 1695.00	1619.00 1619.00	1585.00 1585.00		1493.35 1525.00	493 525
241.39 180.00	1660.16 1640.00	1619.00 1619.00	1585.00 1585.00		1418.77 1460.00	579.34 1418.77 579.91 1460.00
428.11 170.00	1510.13 1278.00	1148.00 1148.00	1118.00 1118.00	_	1082.02 1108.00	577.80 1082.02 578.11 1108.00
240.99 120.00	2079.03	1958.00 1958.00	1925.00 1925.00		1838.04 1880.00	838 880
120.00 120.00	1998.00 1998.00	1998.00 1998.00	1878.00 1878.00		1878.00 1878.00	878 878
120.00 120.00	1998.00 1998.00	1998.00 1998.00	1878.00 1878.00		1878.00 1878.00	878. 878.
180.00 180.00	1552.00 1552.00	1478.00 1478.00	1445.00 1445.00		1372.00 1372.00	372. 372.
695.63 200.00	TRAVISFW_DUP 00 1910.96 00 1850.00	T1 1840.00 1840.00	1806.00 1806.00		1215.33 1650.00	215. 650.

240.00	327.65 240.00	431.20 250.00	431.60 260.00	316.33 200.00	315.85 180.00	188.58 165.00	224.64 165.00	260.09 140.00	95.00	65.00	65.00	145.00 100.00	515.79 270.00	258.83 210.00	121.53 128.16		TOPWID	233.17 150.00
TRAVISFW_DUP 0 1255.00	1308.13 1240.00	1318.80 1230.00	1319.10 1220.00	1764.46 1720.00	1767.70 1695.00	1588.34 1580.00	1380.95 1350.00	1326.15 1270.00	1736.00 1736.00	1725.00 1725.00	1725.00 1725.00	1772.00 1735.00	1753.81 1570.00	1589.58 1555.00	1496.58 1497.00		ENDST	1485.85 1415.00 Page 66
TR 1190.00	1206.00 1206.00	1206.00 1206.00	1190.00 1190.00	1650.00 1650.00	1650.00 1650.00	1548.00 1548.00	1230.00 1230.00	1230.00 1230.00	1700.00 1700.00	1725.00 1725.00	1725.00 1725.00	1707.00 1707.00	1398.00 1398.00	1398.00 1398.00	1464.00 1464.00		STCHR	1300.00 1300.00
1166.00	1161.00 1161.00	1161.00 1161.00	1166.00 1166.00	1618.00 1618.00	1618.00 1618.00	1527.00 1527.00	1208.00 1208.00	1208.00 1208.00	1678.00 1678.00	1660.00 1660.00	1660.00 1660.00	1675.00 1675.00	1366.00 1366.00	1366.00 1366.00	1442.00 1442.00		STCHL	1275.00
1015.00	980.48 1000.00	887.61 980.00	887.49 960.00	1448.13 1520.00	1451.85 1515.00	1399.75 1415.00	1156.31 1185.00	1066.06 1130.00	1641.00 1641.00	1660.00 1660.00	1660.00 1660.00	1627.00 1635.00	1238.03 1300.00	1330.74 1345.00	1375.05 1368.84		SSTA	1252.67 1265.00
589.51	588.91 589.56	589.57 590.06	589.59 590.09	590.05	590.35	591.03 591.63	592.71 593.16	593.89 594.44	594.64 595.28	594.98 595.56	595.34 595.90	595.58 595.99	595.91 596.49	596.06 596.68	596.52 597.05	17:39:37	CWSEL	600.64
8500.000	8550.000 8550.000	8569.000 8569.000	8610.000 8610.000	9910.000 9910.000	10400.000 10400.000	11140.000 11140.000	12770.000 12770.000	13900.000 13900.000	14320.000 14320.000	14365.000 14365.000	14385.000 14385.000	14435.000 14435.000	14880.000 14880.000	15580.000 15580.000	16030.000 16030.000	03N0V14 . 63	SECNO	17790.000 17790.000
		*		-ţe		*		40	4:	* *		•	* *	* *	* *	1 PAGE		-t

247.55 180.00	271.14 170.00	501.70 260.00	453.02 235.00	454.42 225.00	373.63 190.00	338.51 160.00	339.01 150.00	321.73 160.00	205.35 140.00	150.00 120.00	60.00	28.00	28.00	120.00	256.92 180.00	
2245.80 2210.00	2269.06 2220.00	2196.67 2145.00	1451.60 1413.00	1451.88 1425.00	1366.28 1350.00	1405.10 1360.00	1405.25 1360.00	1808.73 1755.00	1774.73 1742.00	1770.00 1765.00	1725.00 1725.00	1707.00 1707.00	1707.00 1707.00	1755.00 1755.00	1833.03 1790.00	
2096.00	2096.00	2096.00 2096.00	1398.00 1398.00	1398.00 1398.00	1348.00 1348.00	1348.00 1348.00	1313.00 1313.00	1677.00 1677.00	1677.00 1677.00	1707.00 1707.00	1707.00 1707.00	1707.00 1707.00	1707.00 1707.00	1707.00 1707.00	1707.00 1707.00	
2067.00 2067.00	2067.00 2067.00	2067.00 2067.00	1374.00 1374.00	1370.00 1370.00	1253.00 1253.00	1253.00 1253.00	1288.00 1288.00	1652.00 1652.00	1652.00 1652.00	1682.00 1682.00	1682.00 1682.00	1679.00 1679.00	1679.00 1679.00	1682.00 1682.00	1682.00 1682.00	
1998.25 2030.00	1997.92 2050.00	1694.98 1885.00	998.59 1178.00	997.47	992.65 1160.00	1066.59	1066.23 1210.00	1486.99 1595.00	1569.39 1602.00	1620.00 1645.00	1665.00 1665.00	1679.00 1679.00	1679.00 1679.00	1635.00 1635.00	1576.11 1610.00	_
602.72 603.52	604.34	605.21 605.77	605.27	605.31 605.86	605.31 605.89	605.44	605.45	606.45	608.46 609.19	611.22 611.68	611.77 612.26	611.99 612.36	614.36 614.76	615.58 615.88	615.71 615.99	17:39:37
19430.000 19430.000	20230.000 20230.000	20970.000	21030.000 21030.000	21075.000 21075.000	21085.000 21085.000	21250.000 21250.000	21270.000 21270.000	21750.000 21750.000	22440.000 22440.000	22970.000 22970.000	23110.000 23110.000	23160.000 23160.000	23201.000 23201.000	23245.000 23245.000	23335.000 23335.000	03NOV14 64
*				* *	*		* *		4: 4:		* *		* *	* *		1 PAGE

Page 67

TOPWID

ENDST

STCHR

STCHL

SSTA

CWSEL

SECNO

550.62	401.50	326.06	171.00	80.68
TRAVISFW_DUP 00 2059.96 00 1945.00	1923.83 1850.00	1775.70 1730.00	1453.67 1427.00	1404.67 1400.00
TR/ 1785.00 1785.00	1658.00 1658.00	1658.00 1658.00	1371.00 1371.00	1371.00 1371.00
1764.00 1764.00	1642.00 1642.00	1642.00 1642.00	1353.00 1353.00	1353.00 1353.00
1509.35 1745.00	1522.34 1600.00	1449.64 1530.00	1282.67 1327.00	1323.99 1330.00
616.54 617.18	616.77 617.55	617.24 617.97	618.95 619.51	619.57 620.12
25340.000 25340.000	26070.000 26070.000	26840.000 26840.000	27770.000 27770.000	27950.000 27950.000
	34	* *	* *	* *

SUMMARY OF ERRORS AND SPECIAL NOTES

1 03NOV14 17:39:37 PAGE 65

PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE	PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE	PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE	PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE	PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE	PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE	PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE	PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE	PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE	PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE	PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE	PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE	PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE RANGE
120.000	850.000	5810.000 5810.000	5930.000	8569.000	9910.000	11140.000	13900,000	14320,000	14365.000 14365.000	14880.000 14880.000	15580.000 15580.000	16030.000
WARNING SECNO=	WARNING SECNO=	WARNING SECNO= WARNING SECNO=	WARNING SECNO=	WARNING SECNO=	WARNING SECNO=	WARNING SECNO=	WARNING SECNO=	WARNING SECNO=	WARNING SECNO= WARNING SECNO=	WARNING SECNO= WARNING SECNO=	WARNING SECNO= WARNING SECNO=	WARNING SECNO=

RANGE	RANGE RANGE	RANGE	RANGE RANGE	RANGE RANGE	RANGE RANGE	RANGE		RANGE	RANGE
ACCEPTABLE	ACCEPTABLE ACCEPTABLE	ACCEPTABLE	ACCEPTABLE ACCEPTABLE		ACCEPTABLE ACCEPTABLE	ACCEPTABLE			ACCEPTABLE ACCEPTABLE
	OUTSIDE OUTSIDE	OUTSIDE		OUTSIDE OUTSIDE				OUTSIDE	OUTSIDE OUTSIDE
	CHANGE	CHANGE	CHANGE	CHANGE	CHANGE	CHANGE		CHANGE	CHANGE
CONVEYANCE	CONVEYANCE CONVEYANCE	CONVEYANCE	CONVEYANCE	CONVEYANCE CONVEYANCE	CONVEYANCE CONVEYANCE	CONVEYANCE		CONVEYANCE	CONVEYANCE
П	7	2	1	7	7	1		2	1
PROFILE=	PROFILE= PROFILE=	PROFILE=	PROFILE= PROFILE=	PROFILE= PROFILE=	PROFILE= PROFILE=	PROFILE=		PROFILE=	PROFILE= PROFILE=
19430.000	21075.000 21075.000	21085.000	21270.000 21270.000	22440.000 22440.000	23110.000 23110.000	23201.000	17:39:37	23201.000	23245.000 23245.000
WARNING SECNO=	WARNING SECNO= WARNING SECNO=	WARNING SECNO=	WARNING SECNO= WARNING SECNO=	WARNING SECNO= WARNING SECNO=	WARNING SECNO= WARNING SECNO=	WARNING SECNO=	1 03NOV14 PAGE 66	WARNING SECNO=	WARNING SECNO= WARNING SECNO=
	19430.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE	19430.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 21075.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 21075.000	19430.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 21075.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 21085.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 21085.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE	19430.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 21075.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 21075.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 21270.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 21270.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 21270.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE	19430.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 21075.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 21085.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 21270.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 21270.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 22440.000	19430.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 21075.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 21075.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 21270.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 21270.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 22440.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 22440.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 23110.000	19430.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 21075.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 21075.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 21270.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 21270.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 22440.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 22440.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 23110.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 23110.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 23110.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 23201.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 23201.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 23201.000	NING SECNO= 19430.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 21075.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE CONVEYANCE CHANGE OUTSIDE ACCEPTABLE CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 21270.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 22440.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 22440.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 23110.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 23110.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 23201.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 23201.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 23201.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 23201.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 23201.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 23201.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 23201.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 23201.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 23201.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 23201.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 23201.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 23201.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 23201.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 23201.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 23201.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 23201.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 23201.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 23201.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 23201.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 23201.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 23201.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO=	NING SECNO= 19430.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 21075.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 21075.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 21270.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 21270.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 22440.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 23110.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 23110.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 23110.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 23201.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 23201.000 PROFILE= 1 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE NING SECNO= 23201.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE OUTSIDE ACCEPTABLE NING SECNO= 23201.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE OUTSIDE ACCEPTABLE OUTSIDE ACCEPTABLE NING SECNO= 23201.000 PROFILE= 2 CONVEYANCE CHANGE OUTSIDE ACCEPTABLE OU

RANGE RANGE CONVEYANCE CHANGE OUTSIDE ACCEPTABLE CONVEYANCE CHANGE OUTSIDE ACCEPTABLE 7 12 7 PROFILE= PROFILE= PROFILE= PROFILE= PROFILE= PROFILE= PROFILE= 26840.000 26840.000 27770.000 27770.000 27950.000 27950.000 26070.000 WARNING SECNO= WARNING SECNO= WARNING SECNO= WARNING SECNO= WARNING SECNO= WARNING SECNO= WARNING SECNO=

1 03NOV14 17:39:37 PAGE 67 FLOODWAY DATA, TRAVIS CR PROFILE NO. 2 WATER SURFACE ELEVATION
WITH WITHOUT DIFFERENCE
FLOODWAY FLOODWAY VELOCITY MEAN ----- FLOODWAY WIDTH SECTION AREA STATION

01 01 01 01 01 01 01 01 01 01 01 01 01 0	
TRAVISEW_DUP 575.7 576.3 576.5 576.5 577.0 577.0 583.2 588.9 588.9 588.9 588.9 588.9 588.9 588.9 588.9 588.9 588.9 589.6 590.1 590.1 590.1 590.1 590.6 600.6 600.5 595.0 600.5 600.5	
575.7 576.2 576.2 5776.3 5777.2 5777.2 5777.3 5777.3 5777.3 5777.3 588.6 588.7 589.6 589.6 589.6 600.1 5995.0 6005.9 6005.9	
422mmmmmm4	
· ·	:37
	17:39
220.00 220.00 220.00 220.00 220.00 220.00 220.00 220.00 220.00 220.00 220.00 220.00 220.00 220.00 220.00 220.00 220.00 220.00 220.00	03NOV14 PAGE 68

FLOODWAY DATA, TRAVIS CR PROFILE NO. 2 ----- FLOODWAY ----- WATER SURFACE ELEVATION
WIDTH SECTION MEAN WITH WITHOUT DIFFERENCE
AREA VELOCITY FLOODWAY FLOODWAY

STATION

Page 70

	ı
_	٠
a	}
Q	ņ
۳	5

%V~~~4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
606.4 608.5 611.2 611.8 612.0 614.4 615.7 616.5 616.8 619.0 619.0
607.2 609.2 611.7 612.3 612.4 614.8 615.9 616.0 617.1 617.6 619.6 620.1
25.5 106.0 10.5 11.5 11.6 12.6 13.6 14.6
950. 668. 643. 373. 214. 284. 1118. 1521. 1567. 950. 520.
160. 120. 120. 28. 28. 120. 200. 200. 100.
21750.000 22440.000 22970.000 23110.000 23201.000 23245.000 23335.000 25340.000 26840.000 27770.000

Reach	River Sta	Profile	W.S. Elev	Prof Delta WS	E.G. Elev	TOP Wath Act	Term	Colaine		Enc Sta L	Ch Sta L	Ch Sta R	Enc Sta R
			(tr)	(ft)	(H)	(tt)	(cts)	(cfs)	(cfs)	(#)	(ft)	(#)	
Reach-1	21750	100-Yr	606.62		606.73	326.55	96.997	784.23	783.81		1652.00	1677.00	
Reach-1	21750	FW	607.31	0.69	607.46	160.00	737.23	910.65	687.12	1595.00	1652.00	1677.00	1755.00
Reach-1	21270	100-Yr	605.62		605.71	343.42	1240.48	654.28	440.25		1288.00	1313.00	
Reach-1	21270	FW	606.02	0.40	606.23	150.00	932.30	890.19	512.51	1210.00	1288.00	1313.00	1360.00
Reach-1	21250	100-Yr	605.60		605.68	343.05	578.36	1654.34	102.30		1253.00	1348.00	
Reach-1	21250	FW	606.05	0.44	606.15	160.00	333.85	1948.80	52.35	1200.00	1253.00	1348.00	1360.00
Reach-1	21085	100-Yr	605.49		605.56	378.16	670.74	1635.31	28.95		1253.00	1348.00	
Reach-1	21085	FW	605.94	0.45	606.02	190.00	536.95	1793.32	4.73	1160.00	1253.00	1348.00	1350.00
Reach-1	21075	100-Yr	605.49		605.54	459.61	1559.07	547.37	228.56		1370.00	1398.00	
Reach-1	21075	FW	605.90	0.42	606.01	225.00	1453.62	698.48	182.91	1200.00	1370.00	1398.00	1425.00
Reach-1	21030	100-Yr	605.44		605.47	458.33	1633.78	532.09	169.13		1374.00	1398.00	
Reach-1	21030	FW	605.87	0.43	605.91	235.00	1690.18	572.29	72.53	1178.00	1374.00	1398.00	1413.00
Reach-1	20970	100-Yr	605.39		605.44	507.38	1504.47	917.06	488.47		2067.00	2096.00	
Reach-1	20970	FW	605.81	0.43	605.88	260.00	1531.42	985.83	392.75	1885.00	2067.00	2096.00	2145.00
Reach-1	20230	100-Yr	604.51		604.67	274.78	309.84	1388.86	1346.30		2067.00	2096.00	
Reach-1	20230	FW	604.93	0.42	605.11	170.00	198.87	1470.88	1375.26	2050.00	2067.00	2096.00	2220.00
Reach-1	19430	100-Yr	602.87		603.14	251.46	599.04	1689.78	756.18		2067.00	2096.00	
Reach-1	19430	FW	603.60	0.73	603.81	180.00	561.40	1606.24	877.36	2030.00	2067.00	2096.00	2210.00
Reach-1	17790	100-Yr	08.009		600.87	234.19	146.81	900.02	1998.17		1275.00	1300.00	
Reach-1	17790	FW	601.45	0.66	601.57	150.00	107.87	1113.92	1823.21	1265.00	1275.00	1300.00	1415.00
Reach-1	16030	100-Yr	596.35		597.26	118.78	714.04	1981.79	349.17		1442.00	1464.00	
Reach-1	16030	FW	597.09	0.74	297.77	128.64	769.30	1884.89	390.81	1367.00	1442.00	1464.00	1497.00
Reach-1	15580	100-Yr	595.78		595.89	255.09	193.85	1277.42	1573.73		1366.00	1398.00	
Reach-1	15580	FW	596.75	0.97	596.84	210.00	178.29	1190.84	1675.87	1345.00	1366.00	1398.00	1555.00
Reach-1	14880	100-Yr	595.57		595.59	504.69	439.10	739.55	1866.34		1366.00	1398.00	
Reach-1	14880	FW	596.56	0.99	596.59	270.00	458.56	836.32	1750.12	1300.00	1366.00	1398.00	1570.00
Reach-1	14435	100-Yr	595.32		595.41	377.00	1030.58	1415.54	1118.88		1675.00	1707.00	
Reach-1	14435	FW	596.06	0.74	596.33	100.00	842.25	2177.42	545.33	1635.00	1675.00	1707 00	1735 00

1725.00 1725.00 1725.00 1270.00 1725.00 1350.00 1580.00 1695.00 1220.00 1230.00 Enc Sta R 1720.00 1240.00 1736. 1230. £ (ft) 1725.00 1725.00 1725.00 1725.00 1725.00 1700.00 1230.00 1230.00 1548.00 1725.00 1650.00 1650.00 1190.00 1206.00 1206.00 1206.00 1206.00 1190.00 œ Ch Sta (ft) 1660.00 1660.00 1660.00 1660.00 1660.00 1678.00 1208.00 1208.00 1527.00 1527.00 1618.00 1618.00 1166.00 1161.00 1161.00 1161.00 Ch Sta I 1660.00 1130.00 8 8 1185.00 1415.00 8 8 1515.00 980.00 1520.00 960.00 980.00 1000.00 Enc Sta L 1660. 1660. 1660 1641 $\widehat{\boldsymbol{\Xi}}$ 712.12 374.47 995.62 1.10 400.24 916.62 1482.64 355.82 283.64 189.83 2 2 538.98 Q Right 2097.7 538.5 (cts) 2207.74 3565.00 3544.35 3544.35 3565.00 1233.88 1282.14 1012.08 1294.76 1860.96 1960.95 1641.44 1033.02 1845.46 2823.86 2761.77 2823.86 Q Channel (cts) 645.14 20.08 20.08 1956.66 1930.00 1842.42 1359.81 515.23 342.50 1635.92 3371.16 2724.71 1394.36 1394.36 Q Left (cts) 376.68 268.76 146.23 146.23 65.00 264.78 226.61 165.00 191.75 323.62 320.18 436.18 435.73 364.03 336.34 E.G. Elev Top Wdth Act \equiv 595.37 595.10 (ft) 595.38 596.26 595.38 596.25 594.95 593.05 591.45 .37 594.30 590.37 589.83 589.82 589.82 589.76 590. 0.68 0.46 0.40 0.94 0.62 0.63 0.54 0.58 0.63 0.64 0.64 0.64 0.81 W.S. Elev Prof Delta WS River: RIVER-1 Reach: Reach-1 (Continued) € (ft) 595.30 595.98 595.30 595.98 595.30 595.84 594.75 594.81 594.15 592.97 593.36 591.31 591.89 590.60 591.23 590.29 589.79 589.77 589.77 589.32 Profile 100-Yr 100-Yr FW 100-Yr FW 100-Yr 100-Yr FW 100-Yr FW 100-Yr FW 100-Yr FW 100-Yr 100-Yr 100-Yr 100-Yr 100-Yr FW 100-Yr ¥ M ¥ M ¥ Ž ¥. HEC-RAS Plan: Dup Eff FW BR U BRD 8559.5 BR U 8559.5 BR U 8559.5 BRD 8559.5 BRD River Sta 14375 14375 14375 14375 14385 14365 11140 10400 14365 14320 14320 13900 12770 12770 10400 9910 9910 8610 8610 8569 8569 Reach Reach-1 Reach-1

1240.00 1255.00 1305.00 1330.00 2155.00 2135.00 2094.00 2094.00 2094.00 2110.00 1625.00 1695.00 Enc Sta R 2094.00 1640.00 8 (ft) 1206.00 1206.00 1190.00 1190.00 1285.00 2081.00 2081.00 2093.00 2093.00 2093.00 2093.00 2110.00 1619.00 1619.00 1619.00 1619.00 1619.00 Sta R S (ft) 1161.00 1161.00 1166.00 1166.00 1257.00 2055.00 2055.00 2050.00 2050.00 2050.00 2050.00 2035.00 1585.00 1585.00 1585.00 1585.00 1585.00 Ch Sta L 1015.00 1170.00 2015.00 2025.00 2049.00 1145.00 2049.00 2049.00 2035.00 1475.00 1460.00 1525.00 2049.00 Enc Sta L 1000. Ξ 216.98 185.62 459.93 524.55 1755.05 2673.83 567.01 1813.61 1437.71 95.79 95.79 670.27 82.02 1217.28 455.88 349.41 248.23 1242.30 Q Right (cts) 2465.45 1679.79 1873.53 2123.80 1674.11 1782.40 2478.82 2545.83 5048.67 4875.49 4875.49 5065.00 3505.56 2137.56 2900.69 2954.20 Q Channel (cfs) 2077.57 5.18 5.18 2620.28 2623.34 212.64 226.96 2069.19 1272.28 1222.55 703.06 7.86 2342.17 1040.04 1793.43 1311.21 Q Left (cts) 336.34 335.13 202.55 167.91 356.69 351.78 350.40 320.91 45.00 320.31 43.00 326.69 359.59 236.92 244.68 E.G. Elev Top Wdth Act \equiv 589.42 589.38 590.18 589.18 588.33 586.85 588.08 586.63 584.59 83 88 .63 63 584.08 585.02 583.52 583.96 582.72 579.86 580.20 586. 586. 586. 0.82 1.17 0.99 0.35 0.87 0.35 0.35 0.72 0.23 0.99 Prof Delta WS River: RIVER-1 Reach: Reach-1 (Continued) Œ 589.32 590.12 588.12 589.23 589.26 590.08 589.00 586.74 587.90 586.56 587.55 586.51 586.86 586.51 586.86 586.51 586.86 583.35 583.95 584.67 583.38 583.68 582.42 579.58 579.93 W.S. Elev (H) Profile 100-Yr FW 100-Yr FW 100-Yr FW 100-Yr 100-Yr 100-Yr FW 100-Yr FW 100-Yr 100-Yr FW 100-Yr FW 100-Yr 100-Yr FW 100-Yr 100-Yr 3 M N 3 3 Plan: Dup Eff FW Sta BR U BR D River 5838.5 1 5838.5 5838.5 8550 8310 8310 7610 7610 8200 8500 6150 6150 5930 5810 5810 5110 5770 5770 4540 4540 2825 5867 5867 2825 HEC-RAS Reach Reach-1 Reach-1

1278.00 1998.00 2000.00 1998.00 1998.00 1998.00 1552.00 1850.00 Enc Sta R (£ 1148.00 1958.00 1998.00 1998.00 1998.00 1998.00 1998.00 1478.00 1840.00 1548.00 1478.00 1840.00 Ch Sta R (H) 1118.00 1878.00 1925.00 1878.00 1878.00 1878.00 1445.00 1806.00 1430.00 Ch Sta L Œ 1878.00 1878.00 8 1878.00 1878.00 1372.00 1880.00 1650.00 Enc Sta L 1108.0 £ 2125.18 1972.56 1035.14 886.54 132.56 114.75 770.35 869.34 818.28 178.98 Q Right (cts) 2675.44 3132.39 5150.00 5150.00 5150.00 4472.22 2774.19 1870.99 12249.81 Q Channel (cfs) 349.38 982.47 545.22 2460.73 885.43 1605.46 Q Left (cfs) 433.98 239.83 120.00 265.06 695.73 352.60 263.06 Prof Delta WS E.G. Elev Top Wdth Act \equiv 578.15 577.31 577.48 576.13 577.22 577.38 577.22 577.37 576.85 576.85 576.78 576.37 0.16 0.14 0.16 0.00 0.15 0.19 0.00 0.00 0.08 HEC-RAS Plan: Dup Eff FW River: RIVER-1 Reach: Reach-1 (Continued) € 577.03 577.18 577.03 577.19 577.91 578.07 574.90 574.90 574.90 576.72 576.59 576.78 575.70 575.70 576.32 576.24 W.S. Elev (H) Profile 100-Yr FW 100-Yr FW 100-Yr FW 100-Yr 100-Yr FW 100-Yr 100-Yr 100-Yr 100-Yr ≥ N ¥. ≥ E ¥ Š River Sta BRD BR U BR U 1650 1020 1650 1020 948 961 948 935 850 120 2 2 Reach Reach-1 Reach-1

100-Yr 619.67 620.15 620.41 FW 620.15 0.48 620.72 100-Yr 619.06 619.20 FW 619.54 0.49 619.72 100-Yr 617.45 617.49 FW 618.05 618.10 FW 617.00 617.02 FW 617.64 617.02 FW 617.64 617.66	81.63		(010)	(CIS)	(¥)	(£)	(£)	(H)
620.15 0.48 619.06 619.54 0.49 617.45 617.00 617.00	70.00	317.81	913.80	268.39		1353.00	1371.00	
619.06 619.54 0.49 617.45 617.00 617.00		331.29	870.75	297.96	1330.00	1353.00	1371.00	1400.00
619.54 0.49 617.45 617.00 617.00 617.64 0.64	173.00	372.65	471.94	655.41		1353.00	1371.00	
617.45 618.05 0.60 617.00 617.64 0.64	100.00	301.93	533.85	664.22	1327.00	1353.00	1371.00	1427.00
618.05 0.60 617.00 617.64 0.64	331.14	647.13	305.57	547.30		1642.00	1658.00	
617.64 0.64	200.00	653.14	336.99	509.86	1530.00	1642.00	1658.00	1730.00
617.64 0.64	407.09	284.62	265.38	1020.00		1642.00	1658.00	
	250.00	224.52	289.00	1056.48	1600.00	1642.00	1658.00	1850.00
100-Yr 616.79 616.80	557.31	520.48	314.73	1309.79		1764.00	1785.00	
617.28 0.50	200.00	130.54	515.58	1498.89	1745.00	1764.00	1785.00	1945.00
100-Yr 615.93 615.99	263.08	618.44	766.31	855.25		1682.00	1707.00	
	180.00	661.73	729.74	848.53	1610.00	1682.00	1707.00	1790.00
100-Yr 615.88 615.94	264.26	618.83	765.02	856.16		1682.00	1707.00	
616.02 0.14	120.00	650.37	907.11	682.51	1635.00	1682.00	1707.00	1755.00
100-Yr 615.86 615.91	260.16	584.23	807.72	848.06		1679.00	1707.00	
	28.00		2240.00		1679.00	1679.00	1707.00	1707.00
100-Yr 615.86 615.91	159.85	95.20	2139.09	8.56		1679.00	1707.00	
614.93 -0.93 615.86			2239.46		1679.00	1679.00	1707.00	1707.00
100-Yr 615.75 615.91	143.24	95.20	2139.09	8.56		1679.00	1707.00	
614.93 -0.82 615.81			2239.46		1679.00	1679.00	1707.00	1707.00
100-Yr 610.55 613.45	28.00		2240.00			1679.00	1707.00	
612.42 1.88 614.09	28.00		2240.00		1679.00	1679.00	1707.00	1707.00
100-Yr 611.51 611.69	218.96	788.96	774.36	676.68		1682.00	1707.00	
612.26 0.76 613.09	00.09	363.57	1488.78	387.66	1665.00	1682.00	1707.00	1725.00
100-Yr 611.01	264.56	784.17	722.76	828.07		1682.00	1707.00	
	120.00	515.71	1015.23	804.06	1645.00	1682.00	1707.00	1765.00
100-Yr 608.63 608.92	207.31	708.89	965.42	89.099		1652.00	1677.00	
609.23 0.60 609.53	140.00	683.03	1043.66	608.31	1602.00	1652.00	1677.00	1742.00

Reach	River Sta	Profile	W.S. Elev	Prof Delta WS	E.G. Elev	Top Wdth Act	Q Left	Q Channel	Q Right	Enc Sta L	Ch Sta L	Ch Sta R	Enc Sta R
			(t)	(£)	(tt)	(#)	(cfs)	(cfs)	(cts)	(£)	(H)	(¥)	€
Reach-1	21750	100-Yr	606.62		606.73	326.55	766.96	784.23	783.81		1652.00	1677.00	
Reach-1	21750	FW	607.31	69.0	607.46	160.00	737.23	910.65	687.12	1595.00	1652.00	1677.00	1755.00
Reach-1	21270	100-Yr	605.62		605.71	343.42	1240.48	654.28	440.25		1288.00	1313.00	
Reach-1	21270	FW	606.02	0.40	606.23	150.00	932.30	890.19	512.51	1210.00	1288.00	1313.00	1360.00
Reach-1	21250	100-Yr	605.60		605.68	343.05	578.36	1654.34	102.30		1253.00	1348.00	
Reach-1	21250	FW	606.05	0.44	606.15	160.00	333.85	1948.80	52.35	1200.00	1253.00	1348.00	1360.00
Reach-1	21085	100-Yr	605.49		605.56	378.16	670.74	1635.31	28.95		1253.00	1348.00	
Reach-1	21085	FW	605.94	0.45	606.02	190.00	536.95	1793.32	4.73	1160.00	1253.00	1348.00	1350.00
Reach-1	21075	100-Yr	605.49		605.54	459.61	1559.07	547.37	228.56		1370.00	1398.00	
Reach-1	21075	FW	06.509	0.42	606.01	225.00	1453.62	698.48	182.91	1200.00	1370.00	1398.00	1425.00
Reach-1	21030	100-Yr	605.44		605.47	458.33	1633.78	532.09	169.13		1374.00	1398.00	
Reach-1	21030	FW	605.87	0.43	605.91	235.00	1690.18	572.29	72.53	1178.00	1374.00	1398.00	1413.00
Reach-1	20970	100-Yr	602.39		605.44	507.38	1504.47	917.06	488.47		2067.00	2096.00	
Reach-1	20970	FW	605.81	0.43	605.88	260.00	1531.42	985.83	392.75	1885.00	2067.00	2096.00	2145.00
Reach-1	20230	100-Yr	604.51		604.67	274.78	309.84	1388.86	1346.30		2067.00	2096.00	
Reach-1	20230	FW	604.93	0.42	605.11	170.00	198.87	1470.88	1375.26	2050.00	2067.00	2096.00	2220.00
Reach-1	19430	100-Yr	602.87		603.14	251.46	599.04	1689.78	756.18		2067.00	2096.00	
Reach-1	19430	FW	603.60	0.73	603.81	180.00	561.40	1606.24	877.36	2030.00	2067.00	2096.00	2210.00
Reach-1	17790	100-Yr	600.80		600.87	234.19	146.81	900.02	1998.17		1275.00	1300.00	
Reach-1	17790	FW	601.45	99.0	601.57	150.00	107.87	1113.92	1823.21	1265.00	1275.00	1300.00	1415.00
Reach-1	16030	100-Yr	596.35		597.26	118.78	714.04	1981.79	349.17		1442.00	1464.00	
Reach-1	16030	FW	597.09	0.74	22.77	128.64	769.30	1884.89	390.81	1367.00	1442.00	1464.00	1497.00
Reach-1	15580	100-Yr	595.78		595.89	255.09	193.85	1277.42	1573.73		1366.00	1398.00	
Reach-1	15580	FW	596.75	0.97	596.84	210.00	178.29	1190.84	1675.87	1345.00	1366.00	1398.00	1555.00
Reach-1	14880	100-Yr	595.57		595.59	504.69	439.10	739.55	1866.34		1366.00	1398.00	
Reach-1	14880	FW	596.56	0.99	596.59	270.00	458.56	836.32	1750.12	1300.00	1366.00	1398.00	1570.00
Reach-1	14435	100-Yr	595.32		595.41	377.00	1030.58	1415.54	1118.88		1675.00	1707.00	
Reach-1	14435	EW	506 06	0.74	506 33	400 00	3C CN8	2177 AD	545 33	1635 00	1875 00	4707 00	1725 00

Reach	River Sta	Profile	W.S. Elev	Prof Delta WS	E.G. Elev	Top Wdth Act	Q Left	Q Channel	Q Right	Enc Sta L	Ch Sta L	Ch Sta R	Enc Sta R
			(H)	(H)	(ft)	(£)	(cts)	(cts)	(cfs)	(H)	(ft)	(#)	(#)
Reach-1	8550	100-Yr	589.32		589.42	336.34	2077.57	2465.45	216.98		1161.00	1206.00	
Reach-1	8550	FW	590.12	0.81	590.21	240.00	2168.85	2405.53	185.62	1000.00	1161.00	1206.00	1240.00
Reach-1	8500	100-Yr	589.26		589.38	335.13	2620.28	1679.79	459.93		1166.00	1190.00	
Reach-1	8500	FW	290.08	0.82	590.18	240.00	2623.34	1612.11	524.55	1015.00	1166.00	1190.00	1255.00
Reach-1	8310	100-Yr	589.00		589.18	187.91	212.64	1873.53	2673.83		1166.00	1190.00	
Reach-1	8310	FW	589.88	0.87	590.03	160.00	226.96	1806.21	2726.83	1145.00	1166.00	1190.00	1305.00
Reach-1	7610	100-Yr	588.12		588.33	202.55	2069.19	2123.80	567.01		1257.00	1285.00	
Reach-1	7610	FW	589.23	1.11	589.39	160.00	2136.86	2005.91	617.23	1170.00	1257.00	1285.00	1330.00
Reach-1	6150	100-Yr	586.74		586.85	356.69	1272.28	1674.11	1813.61		2055.00	2081.00	
Reach-1	6150	FW	587.90	1.17	588.08	140.00	827.59	2004.72	1927.68	2015.00	2055.00	2081.00	2155.00
Reach-1	5930	100-Yr	586.56		586.68	351.78	1222.55	1782.40	1755.05		2055.00	2081.00	
Reach-1	5930	FW	587.55	0.99	587.83	110.00	703.06	2478.82	1578.13	2025.00	2055.00	2081.00	2135.00
Reach-1	5867	100-Yr	586.51		586.62	350.40	1081.46	2545.83	1437.71		2050.00	2093.00	
Reach-1	5867	FW	586.86	0.35	587.63	45.00	7.86	5048.67	8.47	2049.00	2050.00	2093.00	2094.00
Reach-1	5838.5 BR U	100-Yr	586.51		586.63	320.91	100.51	4875.49	95.79		2050.00	2093.00	
Reach-1	5838.5 BR U	FW	586.86	0.35	587.63	45.00	5.18	5059.82		2049.00	2050.00	2093.00	2094.00
Reach-1	5838.5 BR D	100-Yr	586.51		586.63	320.31	100.51	4875.49	95.79		2050.00	2093.00	
Reach-1	5838.5 BR D	FW	586.86	0.35	587.43	45.00	5.18	5059.82		2049.00	2050.00	2093.00	2094.00
Reach-1	5810	100-Yr	583.35		584.59	43.00		5065.00			2050.00	2093.00	
Reach-1	5810	FW	584.34	0.99	585.41	43.00		5065.00		2049.00	2050.00	2093.00	2094.00
Reach-1	5770	100-Yr	583.95		584.08	326.69	1311.21	3505.56	248.23		2035.00	2110.00	
Reach-1	2770	PW.	584.67	0.72	585.02	75.00		2065.00		2035.00	2035.00	2110.00	2110.00
Reach-1	5110	100-Yr	583.38		583.52	359.59	2342.17	2137.56	670.27		1585.00	1619.00	
Reach-1	5110	FW	583.68	0.29	583.96	150.00	2324.83	2743.15	82.02	1475.00	1585.00	1619.00	1625.00
Reach-1	4540	100-Yr	582.42		582.72	236.92	1040.04	2867.66	1242.30		1585.00	1619.00	
Reach-1	4540	FW	582.65	0.23	582.97	170.00	978.52	2954.20	1217.28	1525.00	1585.00	1619.00	1695.00
Reach-1	2825	100-Yr	579.58		579.86	244.68	1793.43	2900.69	455.88		1585.00	1619.00	
Posch.1	2000	74.7	00 011		0000	0000		1 1 0 0 0	27 070	4 400 00		00007	

Reach	Reach River Sta	Profile	W.S. Elev	Prof Delta WS	E.G. Elev	Top Wdth Act	Q Left	Q Channel	Q Right	Enc Sta L	Ch Sta L	Ch Sta R	Enc Sta R
			(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(H)	(ft)	(ft)	(ft)
Reach-1	1650	100-Yr	577.91		578.15	433.98	349.38	2675.44	2125.18		1118.00	1148.00	
Reach-1	1650	FW	578.07	0.16	578.40	170.00	186.62	2990.83	1972.56	1108.00	1118.00	1148.00	1278.00
Reach-1	1020	100-Yr	577.03		577.31	239.83	982.47	3132.39	1035.14		1925.00	1958.00	
Reach-1	1020	FW	577.18	0.14	577.48	120.00	1066.91	3196.55	886.54	1880.00	1925.00	1958.00	2000.00
Reach-1	961	100-Yr	577.03		577.22	120.00		5150.00			1878.00	1998.00	
Reach-1	961	FW	577.19	0.16	577.38	120.00		5150.00		1878.00	1878.00	1998.00	1998.00
Reach-1	948 BR U	100-Yr	574.90		577.22			5150.00			1878.00	1998.00	
Reach-1		FW	574.90	00:00	577.37			5150.00		1878.00	1878.00	1998.00	1998.00
Reach-1	948 BRD	100-Yr	574.90		576.85			5150.00			1878.00	1998.00	
Reach-1		FW	574.90	00:00	577.06			5150.00		1878.00	1878.00	1998.00	1998.00
Reach-1	935	100-Yr	576.72		576.85	265.06	545.22	4472.22	132.56		1878.00	1998.00	
Reach-1	935	FW	576.87	0.15	277.06	120.00		5150.00		1878.00	1878.00	1998.00	1998.00
Reach-1	850	100-Yr	576.59		576.78	263.06	1605.46	2774.19	770.35		1445.00	1478.00	
Reach-1	850	FW	576.78	0.19	576.99	180.00	1436.40	2844.26	869.34	1372.00	1445.00	1478.00	1552.00
Reach-1	120	100-Yr	576.32		576.37	695.73	2460.73	1870.99	818.28		1806.00	1840.00	
Reach-1	120	FW	576.24	-0.08	576.41	200.00	2200.43	2770.59	178.98	1650.00	1806.00	1840.00	1850.00
Reach-1	20	100-Yr	575.70		576.13	352.60	885.43	12249.81	114.75		1430.00	1548.00	
Reach-1	5	NA.	575.70	00.00	576.13	352.60	885.43	12249.81	114.75		1430.00	1548.00	

Reach	River Sta	Profile	W.S. Elev	Prof Delta WS	E.G. Elev	Top Wdth Act	Q Left	Q Channel	Q Right	Enc Sta L	Ch Sta L	Ch Sta R	Enc Sta R
			(#)	(ft)	(m)	(ft)	(cts)	(cfs)	(cfs)	(#)	(H)	(ft)	(ft)
Reach-1	21750	100-Yr	606.62		606.73	326.55	766.98	784.20	783.82		1652.00	1677.00	
Reach-1	21750	FW	607.31	0.69	607.46	160.00	737.23	910.67	687.10	1595.00	1652.00	1677.00	1755.00
Reach-1	21270	100-Yr	605.62		605.72	343.44	1240.52	654.22	440.26		1288.00	1313.00	
Reach-1	21270	FW	606.02	0.40	606.23	150.00	932.27	890.23	512.50	1210.00	1288.00	1313.00	1360.00
Reach-1	21250	100-Yr	605.60		605.68	343.06	578.41	1654.27	102.32		1253.00	1348.00	
Reach-1	21250	FW	606.04	0.44	606.15	160.00	333.83	1948.83	52.35	1200.00	1253.00	1348.00	1360.00
Reach-1	21085	100-Yr	605.49		605.56	378.18	670.84	1635.20	28.96		1253.00	1348.00	
Reach-1	21085	FW	605.93	0.45	606.02	190.00	536.91	1793.36	4.73	1160.00	1253.00	1348.00	1350.00
Reach-1	21075	100-Yr	605.49		605.54	459.64	1559.14	547.30	228.55		1370.00	1398.00	
Reach-1	21075	FW	605.90	0.41	100909	225.00	1453.58	698.51	182.90	1200.00	1370.00	1398.00	1425.00
Reach-1	21030	100-Yr	605.45		605.47	458.36	1633.83	532.03	169.14		1374.00	1398.00	
Reach-1	21030	FW	605.87	0.43	605.91	235.00	1690.16	572.31	72.53	1178.00	1374.00	1398.00	1413.00
Reach-1	20970	100-Yr	605.39		605.44	507.40	1504.58	916.95	488.48		2067.00	2096.00	
Reach-1	20970	FW	605.81	0.42	605.88	260.00	1531.37	985.88	392.74	1885.00	2067.00	2096.00	2145.00
Reach-1	20230	100-Yr	604.51		604.68	274.81	309.91	1388.68	1346.41		2067.00	2096.00	
Reach-1	20230	FW	604.93	0.41	605.11	170.00	198.86	1470.97	1375.17	2050.00	2067.00	2096.00	2220.00
Reach-1	19430	100-Yr	602.87		603.14	251.57	599.22	1689.11	756.68		2067.00	2096.00	
Reach-1	19430	FW	603.59	0.72	603.81	180.00	561.38	1606.46	877.15	2030.00	2067.00	2096.00	2210.00
Reach-1	17790	100-Yr	600.81		600.88	234.28	146.92	899.40	1998.68		1275.00	1300.00	
Reach-1	17790	FW	601.45	0.64	601.56	150.00	107.87	1114.12	1823.01	1265.00	1275.00	1300.00	1415.00
Reach-1	16030	100-Yr	596.55		597.40	122.07	729.91	1956.48	358.61		1442.00	1464.00	
Reach-1	16030	FW	597.04	0.48	597.74	128.04	765.54	1891.59	387.87	1367.00	1442.00	1464.00	1497.00
Reach-1	15580	100-Yr	596.07		596.17	258.91	196.46	1248.87	1599.66		1366.00	1398.00	
Reach-1	15580	FW	596.69	0.62	596.78	210 00	178 25	1104 02	1671 83	1245 00	1255 00	420000	4577

Enc Sta R	(H)		1400.00		1427.00			1730.00		1850.00		1945.00		1790.00		1755.00		1707.00		1707.00		1707.00		1707.00		1725.00		1765.00		1742.00
Ch Sta R	(#)	1371.00	1371.00	1371.00	1371.00	C C C	1658.00	1658.00	1658.00	1658.00	1785.00	1785.00	1707.00	1707.00	1707.00	1707.00	1707.00	1707.00	1707.00	1707.00	1707.00	1707.00	1707.00	1707.00	1707.00	1707.00	1707.00	1707.00	1677.00	1677.00
Ch Sta L	(ft)	1353.00	1353.00	1353.00	1353.00	0000	1642.00	1642.00	1642.00	1642.00	1764.00	1764.00	1682.00	1682.00	1682.00	1682.00	1679.00	1679.00	1679.00	1679.00	1679.00	1679.00	1679.00	1679.00	1682.00	1682.00	1682.00	1682.00	1652.00	1652.00
Enc Sta L	(#)		1330.00		1327.00			1530.00		1600.00		1745.00		1610.00		1635.00		1679.00		1679.00		1679.00		1679.00		1665.00		1645.00		1602.00
Q Right	(cfs)	268.39	297.96	655.41	664.22	0	547.30	509.86	1020.00	1056.48	1309.79	1498.89	855.25	848.53	856.16	682.51	843.06		8.56		8.56				676.68	387.66	828.07	804.06	660.68	608.30
Q Channel	(cfs)	913.80	870.75	471.94	533.85	1	305.57	336.99	265.38	289.00	314.73	515.58	766.31	729.74	765.02	907.11	807.72	2240.00	2139.09	2239.46	2139.09	2239.46	2240.00	2240.00	774.36	1488.78	722.76	1015.23	965.42	1043.67
O Left	(cts)	317.81	331.29	372.65	301.93		647.13	653.14	284.62	224.52	520.48	130.54	618.44	661.73	618.83	650.37	584.23		95.20		95.20				788.96	363.57	784.17	515.71	708.89	683.03
Top Wdth Act	(H)	81.63	70.00	173.00	100.00		331.14	200.00	407.09	250.00	557.31	200.00	263.08	180.00	264.26	120.00	260.16	28.00	159.85		143.24		28.00	28.00	218.96	00.09	264.56	120.00	207.31	140.00
E.G. Elev	(H)	620.41	620.72	619.20	619.72		617.49	618.10	617.02	617.66	616.80	617.32	615.99	616.18	615.94	616.11	615.91	615.86	615.91	615.86	615.91	615.81	613.45	614.09	611.69	613.09	611.16	612.00	608.92	609.53
Prof Delta WS	(ft)		0.48		0.49			0.60		0.64		0.50		0.19		0.14		-0.93		-0.93		-0.82		1.88		92.0		0.68		09:0
W.S. Elev	(ft)	619.67	620.15	619.06	619.54		617.45	618.05	617.00	617.64	616.79	617.28	615.93	616.13	615.88	616.02	615.86	614.93	615.86	614.93	615.75	614.93	610.55	612.42	611.51	612.26	611.01	611.69	608.63	609.23
Profile		100-Yr	FW	100-Yr	FW		100-Yr	FW	100-Yr	FW	100-Yr	FW	100-Yr	FW	100-Yr	FW	100-Yr	FW	100-Yr	FW										
River Sta		27950	27950	27770	27770		26840	26840	26070	26070	25340	25340	23335	23335	23245	23245	23201	23201	23180.5 BR U	23180.5 BR U	23180.5 BR D	23180.5 BR D	23160	23160	23110	23110	22970	22970	22440	22440
Reach		Reach-1	Reach-1	Reach-1	Reach-1		Reach-1	Reach-1	Reach-1	Reach-1	Reach-1	Reach-1	Reach-1	Reach-1	Reach-1	Reach-1	Reach-1	Reach-1												

Reach	River Sta	Profile	W.S. Elev	Prof Delta WS	E.G. Elev	Top Wdth Act	Q Left			Enc Sta L	Ch Sta L	
			(#)	(ft) (ft)	-	(tt)	(cfs)	(cfs)	(cfs)	(H)	(#)	(#)
Reach-1	27950	100-Yr	619.60		620.37	80.93	315.67				1353.00	
Reach-1	27950	FW	620.09	0.49		70.00	330.22			1330.00	1353.00	

Reach	PIC JANN	10110		LIOI Della MO			101		A LUGINI	EIR SIG L	T BIG IS	OI OIG	10001
			(#)	(#)	(ft)	(#)	(cfs)	(cfs)	(cfs)	(tt)	(ff.)	(H)	(ft)
Reach-1	27950	100-Yr	619.60		620.37	80.93	315.67	918.76	265.57		1353.00	1371.00	
Reach-1	27950	FW	620.09	0.49	620.67	70.00	330.22	874.11	295.67	1330.00	1353.00	1371.00	1400.00
Reach-1	27770	100-Yr	619.04		619.19	172.77	372.14	472.51	655.34		1353.00	1371.00	
Reach-1	27770	ΡW	619.51	0.46	619.69	100.00	301.71	534.49	663.80	1327.00	1353.00	1371.00	1427.00
Reach-1	26840	100-Yr	617.22		617.27	325.47	632.48	318.30	549.22		1642.00	1658.00	
Reach-1	26840	FW	617.95	0.73	618.00	200.00	648.92	340.66	510.42	1530.00	1642.00	1658.00	1730.00
Reach-1	26070	100-Yr	616.67		616.69	399.02	276.27	276.68	1017.05		1642.00	1658.00	
Reach-1	26070	FW	617.51	0.84	617.53	250.00	224.08	291.59	1054.33	1600.00	1642.00	1658.00	1850.00
Reach-1	25340	100-Yr	616.41		616.42	547.24	496.03	326.18	1322.80		1764.00	1785.00	
Reach-1	25340	FW	617.13	0.73	617.18	200.00	130.38	518.08	1496.53	1745.00	1764.00	1785.00	1945.00
Reach-1	23335	100-Yr	615.35		615.42	247.31	614.98	783.01	842.01		1682.00	1707.00	
Reach-1	23335	FW	615.88	0.54	615.94	180.00	658.25	735.00	846.75	1610.00	1682.00	1707.00	1790.00
Reach-1	23245	100-Yr	615.28		615.34	248.08	615.07	782.22	842.71		1682.00	1707.00	
Reach-1	23245	FW	615.77	0.49	615.87	120.00	649.09	908.98	681.93	1635.00	1682.00	1707.00	1755.00
Reach-1	23201	100-Yr	615.25		615.30	244.99	582.65	822.82	834.53		1679.70	1706.30	
Reach-1	23201	FW	615.75	0.50	615.82	143.00	677.70	869.12	693.18	1617.00	1679.70	1706.30	1760.00
Reach-1	23180.5 BR U	100-Yr	615.25		615.31	17.44	17.85	2205.67	16.82		1679.70	1706.30	
Reach-1	23180.5 BR U	FW	615.75	0.50	615.82	110.35	76.47	2145.22	20.42	1617.00	1679.70	1706.30	1760.00
Reach-1	23180.5 BR D	100-Yr	615.25		615.30	17.44	18.14	2205.09	17.11		1679.70	1706.30	
Reach-1	23180.5 BR D	FW	615.66	0.41	615.81	103.21	76.74	2144.66	20.70	1617.00	1679.70	1706.30	1760.00
Reach-1	23160	100-Yr	611.68		611.84	222.40	723.45	868.00	648.55		1679.70	1706.30	
Reach-1	23160	FW	612.46	0.79	612.61	143.00	722.15	887.82	630.02	1617.00	1679.70	1706.30	1760.00
Reach-1	23110	100-Yr	611.50		611.68	218.80	788.63	774.87	676.50		1682.00	1707.00	
Reach-1	23110	FW	612.34	0.84	612.50	142.00	786.05	795.92	658.03	1618.00	1682.00	1707.00	1760.00
Reach-1	22970	100-Yr	611.00		611.15	264.39	783.84	723.38	827.78		1682.00	1707.00	
Reach-1	22970	FW	611.69	69.0	612.00	120.00	515.70	1015.26	804.04	1645.00	1682.00	1707.00	1765.00
Reach-1	22440	100-Yr	608.61		608.91	207.16	708.60	966.86	659.53		1652.00	1677.00	
Reach-1	22440	FW	609.21	0.59	609.52	140.00	682.87	1044.95	607.18	1602.00	1652.00	1677.00	1742.00

Reach	River Sta	Profile	W.S. Elev	Prof Delta WS	E.G. Elev	Top Wdth Act	Q Left	Q Channel	Q Right	Enc Sta L	Ch Sta L	Ch Sta R	Enc Sta R
			(#)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)	(ft)	(ft)	(ft)
Reach-1	21750	100-Yr	09'909		606.72	326.19	766.19	785.49	783.32		1652.00	1677.00	
Reach-1	21750	FW	607.28	0.68	607.44	160.00	737.13	911.85	686.02	1595.00	1652.00	1677.00	1755.00
Reach-1	21270	100-Yr	605.59		602.69	342.72	1239.05	656.41	439.54		1288.00	1313.00	
Reach-1	21270	MA.	605.97	0.38	606.18	150.00	930.77	892.35	511.88	1210.00	1288.00	1313.00	1360.00
Reach-1	21250	100-Yr	605.58		605.66	342.40	576.46	1656.91	101.63		1253.00	1348.00	
Reach-1	21250	FW	606.01	0.43	606.12	160.00	332.95	1949.83	52.21	1200.00	1253.00	1348.00	1360.00
Reach-1	21085	100-Yr	605.46		605.54	377.46	667.43	1638.82	28.76		1253.00	1348.00	
Reach-1	21085	FW	605.90	0.44	602.99	190.00	535.42	1794.85	4.73	1160.00	1253.00	1348.00	1350.00
Reach-1	21075	100-Yr	605.46		605.52	458.89	1556.90	549.50	228.60		1370.00	1398.00	
Reach-1	21075	FW	605.87	0.41	605.98	225.00	1451.92	700.33	182.76	1200.00	1370.00	1398.00	1425.00
Reach-1	21030	100-Yr	605.42		605.45	457.68	1632.65	533.40	168.95		1374.00	1398.00	
Reach-1	21030	FW	605.85	0.42	605.88	235.00	1689.40	573.13	72.48	1178.00	1374.00	1398.00	1413.00
Reach-1	20970	100-Yr	605.37		605.42	506.74	1501.99	919.61	488.40		2067.00	2096.00	
Reach-1	20970	FW	605.79	0.42	605.86	260.00	1529.79	987.62	392.59	1885.00	2067.00	2096.00	2145.00
Reach-1	20230	100-Yr	604.50		604.66	274.40	308.85	1391.21	1344.95		2067.00	2096.00	
Reach-1	20230	FW	604.91	0.41	602:09	170.00	198.73	1472.79	1373.48	2050.00	2067.00	2096.00	2220.00
Reach-1	19430	100-Yr	602.84		603.12	250.77	597.92	1694.09	752.99		2067.00	2096.00	
Reach-1	19430	FW	603.56	0.71	603.77	180.00	561.09	1610.61	873.31	2030.00	2067.00	2096.00	2210.00
Reach-1	17790	100-Yr	600.76		600.84	233.93	146.50	901.81	1996.70		1275.00	1300.00	
Reach-1	17790	FW	601.37	0.61	601.49	150.00	107.92	1116.87	1820.22	1265.00	1275.00	1300.00	1415.00
Reach-1	16030	100-Yr	596.47		597.34	120.72	723.38	1966.87	354.76		1442.00	1464.00	
Reach-1	16030	FW	596.99	0.52	297.67	116.00	795.61	1864.88	384.51	1379.00	1442.00	1464.00	1495.00
Reach-1	15580	100-Yr	596.07		596.17	258.91	196.46	1248.87	1599.66		1366.00	1398.00	
Reach-1	15580	FW	596.69	0.62	596.78	210.00	178.25	1194.92	1671.83	1345.00	1366.00	1398.00	1555.00

	1007	200000000000000000000000000000000000000	E.G. Elev	יסף אממון שכו	T Call	is all is	C Kignt	Enc Sta L	Ch Sta L	Ch Sta R	Enc Sta R
	(H)	(H)	(H)	(H)	(cfs)	(cfs)	(cfs)	(¥)	(ft)	(£)	(¥)
	619.60		620.37	80.96	315.78	918.51	265.71		1353.00	1371.00	
	620.10	0.50	620.68	70.00	330.43	873.46	296.11	1330.00	1353.00	1371.00	1400.00
	619.05		619.19	172.90	372.44	472.18	655.38		1353.00	1371.00	
27770 FW	619.53	0.48	619.71	100.00	301.83	534.15	664.02	1327.00	1353.00	1371.00	1427.00
26840 100-Yr	617.47		617.51	331.66	648.41	304.47	547.12		1642.00	1658.00	
26840 FW	618.03	0.56	618.08	200.00	652.15	337.85	510.00	1530.00	1642.00	1658.00	1730.00
26070 100-Yr	617.03		617.05	407.81	285.50	264.33	1020.17		1642.00	1658.00	
26070 FW	617.61	0.58	617.63	250.00	224.43	289.55	1056.02	1600.00	1642.00	1658.00	1850.00
25340 100-Yr	616.82		616.83	558.28	522.74	313.69	1308.57		1764.00	1785.00	
25340 FW	617.25	0.43	617.29	200.00	130.51	516.08	1498.41	1745.00	1764.00	1785.00	1945.00
23335 100-Yr	615.99		616.05	264.67	618.96	764.58	856.47		1682.00	1707.00	
23335 FW	616.08	0.09	616.13	180.00	661.07	730.74	848.19	1610.00	1682.00	1707.00	1790.00
23245 100-Yr	615.94		616.00	265.89	619.38	763.23	857.39		1682.00	1707.00	
23245 FW	615.97	0.03	616.07	120.00	650.15	907.44	682.41	1635.00	1682.00	1707.00	1755.00
23201 100-Yr	615.92		615.97	261.68	589.82	799.12	851.06		1679.70	1706.30	
23201 FW	615.96	0.04	616.02	143.00	681.57	865.12	693.31	1617.00	1679.70	1706.30	1760.00
23180.5 BR:U 100-Yr	615.92		615.97	167.69	128.93	2090.34	21.55		1679.70	1706.30	
23180.5 BR U FW	615.96	0.04	616.02	128.17	115.20	2099.74	25.80	1617.00	1679.70	1706.30	1760.00
23180.5 BR D 100-Yr	615.79		615.97	149.65	129.20	2089.90	21.71		1679.70	1706.30	
23180.5 BR D FW	615.80	0.01	616.02	115.41	115.47	2099.30	25.97	1617.00	1679.70	1706.30	1760.00
	610.21		610.60	192.46	640.90	1007.03	592.07	9	1679.70	1706.30	
23160 FW	610.21	0.00	610.64	143.00	643.25	1022.43	574.33	1617.00	1679.70	1706.30	1760.00
23110 100-Yr	606.24		606.32	383.79	456.96	841.25	941.79		1679.15	1709.96	
23110 FW	607.04	0.80	607.23	142.00	546.86	1235.60	457.54	1618.00	1679.15	1709.96	1760.00
	605.95		00.909	338.02	1363.51	541.77	429.72		1681.70	1704.88	
22970 FW	606.65	0.69	606.74	160.00	1012.67	732.51	589.82	1585.00	1681.70	1704.88	1745.00
22440 100-Yr	605.64		605.75	229.22	833.86	1069.09	432.05		1645.11	1676.53	
22440 FW	96.909	0.72	606.48	145.00	792.53	1111.48	431.00	1573.00	1645.11	1676.53	1718.00

1789.00 1696.00 1587.00 2210.00 2220.00 1495.00 1555.00 1319.00 1480.00 1554.00 2265.00 Enc Sta R 1415.00 1339. Œ 1671.78 1306.15 1671.78 1676.97 1676.97 1311.84 1309.44 1309.44 1398.42 1395.20 2096.00 2096.00 1300.00 1464.00 1398.00 2167.61 1300.00 2096.00 Ch Sta R Œ Ch Sta L (ft) 1651.96 1651.96 1651.77 1283.88 1289.30 1289.30 1290.07 2154.29 1379.81 1366.31 2067.00 2067.00 1275.00 1442.00 1366.00 1536.00 1629.00 1159.00 1352.00 2050.00 1379.00 1189.00 1290.00 1265.00 1329.00 2005.00 2030.00 1345.00 Enc Sta L € 335.47 259.19 221.52 865.39 1160.45 1813.46 1276.91 1304.37 764.00 1323.53 1996.70 354.76 1599.66 752.99 873.31 1820.22 1239.38 1180.31 Q Right 221. (cfs) 562.04 676.83 907.47 611.69 426.18 362.74 521.49 388.78 326.13 439.20 503.32 1694.09 901.81 1966.87 1248.87 1418.21 1498.00 Q Channel (cts) 1437.49 806.75 1464.12 1687.30 732.88 291.87 527.31 1403.56 597.92 146.50 196.46 303.27 561.09 723.38 Q Left (cfs) 261.44 353.13 378.81 386.80 425.23 190.00 433.04 471.38 587.33 274.02 250.77 180.00 233.93 150.00 120.72 258.91 Top Wdth Act £ 605.39 605.13 604.98 604.97 604.94 604.94 604.93 604.91 603.12 596.17 E.G. Elev 604.64 600.84 597.34 Œ HEC-RAS Plan: Ex Cond FW Trunc River: RIVER-1 Reach: Reach-1 (Continued) 0.71 0.60 0.54 0.62 0.54 0.52 0.52 0.50 0.71 0.41 0.52 0.61 Prof Delta WS E W.S. Elev (ft) 605.33 606.04 604.95 604.93 604.92 605.09 604.96 604.92 604.89 604.48 602.84 600.76 596.47 596.07 Profile 100-Yr FW 100-Yr FW 100-Yr 100-Yr 100-Yr FW 100-Yr 100-Yr 100-Yr FW 100-Yr FW 100-Yr 100-Yr 100-Yr FW 100-Yr FW FV 3 ¥ 3 ¥ M River Sta 22110 21750 21750 21270 21270 21250 21085 21075 21075 21250 21085 21030 21030 20970 20970 20230 20230 19430 19430 17790 17790 16030 16030 15580 15580 Reach Reach-1 Reach-1

_	
Ξ	
끊	
ě	
DC.	
유	
ea	
œ	
_	
ď	
M	
\leq	
-	
Š	
œ	
Ĕ	
Ξ	
>	
ű.	
9	
ď	
Ë	
a	
4	
AS	
ò	
Ċ	
빞	

Reach	River Sta	Profile	W.S. Elev	Prof Delta WS	E.G. Elev	Top Wdth Act	Q Left	Q Channel	Q Right	Enc Sta L	Ch Sta L	Ch Sta R	Enc Sta R
			(H)	(ft)	(H)	(#)	(cfs)	(cfs)	(cfs)	(ft)	(ft)	(ft)	(ft)
Reach-1	27950	100-Yr	619.60		620.37	96.08	315.78	918.51	265.71		1353.00		
Reach-1	27950	FW	620.10	0.50	620.68	70.00	330.43	873.46	296.11	1330.00	1353.00	1371.00	1400.00
Reach-1	27770	100-Yr	619.05		619.19	172.90	372.44	472.18	655.38		1353.00	1371.00	
Reach-1	27770	FW	619.53	0.48	619.71	100.00	301.83	534.15	664.02	1327.00	1353.00	1371.00	1427.00
Reach-1	26840	100-Yr	617.47		617.51	331.66	648.41	304.47	547.12		1642.00	1658.00	
Reach-1	26840	FW	618.03	0.56	618.08	200.00	652.15	337.85	510.00	1530.00	1642.00	1658.00	1730.00
Reach-1	26070	100-Yr	617.03		617.05	407.81	285.50	264.33	1020.17		1642.00	1658.00	
Reach-1	26070	FW	617.61	0.58	617.63	250.00	224.43	289.55	1056.02	1600.00	1642.00	1658.00	1850.00
Reach-1	25340	100-Yr	616.82		616.83	558.28	522.74	313.69	1308.57		1764.00	1785.00	
Reach-1	25340	FW	617.25	0.43	617.29	200.00	130.51	516.08	1498.41	1745.00	1764.00	1785.00	1945.00
Reach-1	23335	100-Yr	615.99		616.05	264.67	618.96	764.58	856.47		1682.00	1707.00	
Reach-1	23335	FW	616.08	60.0	616.13	180.00	661.07	730.74	848.19	1610.00	1682.00	1707.00	1790.00
Reach-1	23245	100-Yr	615.94		616.00	265 89	619.38	763 23	857 39		1682 00	1707 00	
Reach-1	23245	FW	615.97	0.03	616.07	120.00	650.15	907.44	682.41	1635.00	1682.00	1707.00	1755.00
Reach-1	23201	100-Yr	615.92		615.97	261.68	589.82	799.12	851.06		1679.70	1706.30	
Reach-1	23201	FW	615.96	0.04	616.02	143.00	681.57	865.12	693.31	1617.00	1679.70	1706.30	1760.00
Reach-1	23180.5 BR U	100-Yr	615.92		615.97	167.69	128.93	2090.34	21.55		1679.70	1706.30	
Reach-1	23180.5 BR U	FW	615.96	0.04	616.02	128.17	115.20	2099.74	25.80	1617.00	1679.70	1706.30	1760.00
Reach-1	23180.5 BR D	100-Yr	615.79		615.97	149.65	129.20	2089.90	21.71		1679.70	1706.30	
Reach-1	23180.5 BR D	FW	615.80	0.01	616.02	115.41	115.47	2099.30	25.97	1617.00	1679.70	1706.30	1760.00
Reach-1	23160	100-Yr	610.21	The state of the s	610.60	192.46	640.90	1007.03	592.07		1679.70	1706.30	
Reach-1	23160	FW	610.21	0.00	610.64	143.00	643.25	1022.43	574.33	1617.00	1679.70	1706.30	1760.00
Reach-1	23110	100-Yr	606.15		606.23	381.67	448.31	851.93	939.76		1679.15	1709.96	
Reach-1	23110	FW	606.91	0.75	607.10	142.00	540.78	1246.11	453.12	1618.00	1679.15	1709.96	1760.00
Reach-1	22970	100-Yr	605.84		605.89	336.14	1356.77	547.63	430.60		1681.70	1704.88	
Reach-1	22970	FW	606.47	0.63	606.57	160.00	1006.88	738.47	589.64	1585.00	1681.70	1704.88	1745.00
Reach-1	22440	100-Yr	605.55		605.67	227.70	781.23	1134.88	418.90		1641.22	1675.37	
Reach-1	22440	FW	ROB 21	99 0	60 23	445.00	740.00	2414000	447 44	4572 00	00 77 07	1000	00 0787

Reach	River Sta	Profile	W.S. Elev	Prof Delta WS	E.G. Elev	Top Wdth Act	Q Left	Q Channel	Q Right	Enc Sta L	Ch Sta L	Ch Sta R	Enc Sta R
			(H)	(#)	(#)	(#)	(cfs)	(cfs)	(cfs)	(ft)	(ft)	(#)	(ft)
Reach-1	22110	100-Yr	605.26		605.31	260.75	1435.85	565.67	333.49		1651.96	1671.78	
Reach-1	22110	FW	06'509	0.64	605.98	160.00	1426.47	681.11	227.42	1536.00	1651.96	1671.78	1696.00
Reach-1	21750	100-Yr	605.04	THE RESIDENCE PRINCIPLE AND ADDRESS OF THE PR	605.08	352.14	1411.71	792.83	130.46		1737.66	1772.22	
Reach-1	21750	FW	605.62	0.58	602.69	160.00	1243.00	997.40	94.60	1629.00	1737.66	1772.22	1789.00
Reach-1	21270	100-Yr	604.94		604.96	378.43	1403.93	620.42	310.65		1277.76	1306.49	
Reach-1	21270	FW	605.45	0.52	605.52	150.00	1095.76	898.55	340.69	1189.00	1277.76	1306.49	1339.00
Reach-1	21250	100-Yr	604.93		604.96	386.44	1478.26	582.74	274.00		1274.30	1303.04	
Reach-1	21250	FW	605.45	0.51	605.50	160.00	1333.55	850.04	151.40	1159.00	1274.30	1303.04	1319.00
Reach-1	21085	100-Yr	604.91		604.92	424.78	1254.53	562.68	517.80		1365.19	1395.38	
Reach-1	21085	FW	605.40	0.50	605.44	190.00	798.02	801.68	735.29	1290.00	1365.19	1395.38	1480.00
Reach-1	21075	100-Yr	604.90		604.92	432.65	1191.38	522.88	620.74		1450.59	1479.21	
Reach-1	21075	FW	605.41	0.50	605.44	225.00	1037.03	657.45	640.52	1329.00	1450.59	1479.21	1554.00
Reach-1	21030	100-Yr	604.90		604.91	470.98	1191.67	505.64	637.69		1459.65	1491.00	
Reach-1	21030	FW	605.40	0.50	605.42	235.00	914.55	663.83	756.62	1352.00	1459.65	1491.00	1587.00
Reach-1	20970	100-Yr	604.88		604.90	586.87	1761.06	513.35	635.59		2225.71	2253.40	
Reach-1	20970	FW	605.37	0.49	605.40	260.00	2170.21	673.46	66.33	2005.00	2225.71	2253.40	2265.00
Reach-1	20230	100-Yr	604.48		604.64	274.02	303.27	1418.21	1323.53		2067.00	2096.00	
Reach-1	20230	FW	604.89	0.41	605.07	170.00	195.61	1498.00	1351.38	2050.00	2067.00	2096.00	2220.00
Reach-1	19430	100-Yr	602.84		603.12	250.77	597.92	1694.09	752.99		2067.00	2096.00	
Reach-1	19430	FW	603.56	0.71	603.77	180.00	561.09	1610.61	873.31	2030.00	2067.00	2096.00	2210.00
Reach-1	17790	100-Yr	92.009		600.84	233.93	146.50	901.81	1996.70		1275.00	1300.00	
Reach-1	17790	FW	601.37	0.61	601.49	150.00	107.92	1116.87	1820.22	1265.00	1275.00	1300.00	1415.00
Reach-1	16030	100-Yr	596.47		597.34	120.72	723.38	1966.87	354.76		1442.00	1464.00	
Reach-1	16030	FW	596.99	0.52	597.67	116.00	795.61	1864.88	384.51	1379.00	1442.00	1464.00	1495.00
Reach-1	15580	100-Yr	596.07		596.17	258.91	196.46	1248.87	1599.66	The state of the s	1366.00	1398.00	
Reach-1	15580	FW	596.69	0.62	82.965	210.00	178.25	1194.92	1671.83	1345.00	1366.00	1398.00	1555.00

		(ft)	(ft)	(#)	(ft)	(cfs)	(cfs)	(cfs)	(ft)	(ft)	(f)	
	100-Yr	619.60		620.37	80.96	315.78	918.51	265.71		1353.00	1371.00	0
	FW	620.10	0.50	620.68	70.00	330.43	873.46	296.11	1330.00	1353.00	1371.00	
	100-Yr	619.05		619.19	172.90	372.44	472.18	655.38		1353.00	1371.00	
	FW	619.53	0.48	619.71	100.00	301.83	534.15	664.02	1327.00	1353.00	1371.00	
1	100-Yr	617.47		617.51	331.66	648.41	304.47	547.12		1642.00	1658.00	
	P.W	618.03	0.56	618.08	200.00	652.15	337.85	510.00	1530.00	1642.00	1658.00	
	100-Yr	617.03		617.05	407.81	285.50	264.33	1020.17		1642.00	1658.00	
	FW	617.61	0.58	617.63	250.00	224.43	289.55	1056.02	1600.00	1642.00	1658.00	1850.00
	100-Yr	616.82		616.83	558.28	522.74	313.69	1308.57		1764.00	1785.00	
	FW	617.25	0.43	617.29	200.00	130.51	516.08	1498.41	1745.00	1764.00	1785.00	1945.00
	100-Yr	615.99		616.05	264.67	618.96	764.58	856.47		1682.00	1707.00	
	FW	616.08	0.09	616.13	180.00	661.07	730.74	848.19	1610.00	1682.00	1707.00	1790.00
	100-Yr	615.94		616.00	265.89	619.38	763.23	857.39		1682.00	1707.00	
	FW	615.97	0.03	616.07	120.00	650.15	907.44	682.41	1635.00	1682.00	1707.00	1755.00
	100-Yr	615.92		615.97	261.68	589.82	799.12	851.06		1679.70	1706.30	
	FW	615.96	0.04	616.02	143.00	681.57	865.12	693.31	1617.00	1679.70	1706.30	1760.00
23180.5 BR U	100-Yr	615.92		615.97	167.69	128.93	2090.34	21.55		1679.70	1706.30	
23180.5 BR U	FW	615.96	0.04	616.02	128.17	115.20	2099.74	25.80	1617.00	1679.70	1706.30	1760.00
3R D	100-Yr	615.79		615.97	149.65	129.20	2089.90	21.71		1679.70	1706.30	
23180.5 BR D	FW	615.80	0.01	616.02	115.41	115.47	2099.30	25.97	1617.00	1679.70	1706.30	1760.00
	100-Yr	610.21		610.60	192.46	640.90	1007.03	592.07		1679.70	1706.30	
	FW	610.21	00:00	610.64	143.00	643.25	1022.43	574.33	1617.00	1679.70	1706.30	1760.00
	100-Yr	60.909		606.18	380.14	441.95	859.82	938.23		1679.15	1709.96	
	ΡW	606.82	0.73	607.02	142.00	536.92	1252.76	450.31	1618.00	1679.15	1709.96	1760.00
	100-Yr	605.77		605.82	334.78	1351.99	551.78	431.23		1681.70	1704.88	
	FW	606.37	09.0	606.47	160.00	1003.28	742.20	589.53	1585.00	1681.70	1704.88	1745.00
	100-Yr	605.49		605.61	226.78	670.25	1207.48	457.27		1636.73	1671.49	
	C14/	202 42	0.64	AC 202	445.00	00000	4777 70	1000	0	0000		4740 00

1696.00 1789.00 1319.00 1480.00 8 2265.00 2220.00 1495.00 1555.00 1554.00 1587.00 2210.00 1415.00 œ 1339.0 Enc Sta I € 1671.78 1671.78 1310.00 1306.00 1774.34 1408.00 1478.00 1497.95 2253.25 2096.00 2096.00 2096.00 1300.00 1300.00 1464.00 1398.00 1774.34 Ch Sta R Œ 1651.96 1732.57 1282.00 1277.00 1367.00 1732.57 1449.00 1459.49 2227.63 2067.00 2067.00 1275.00 1442.00 1366.00 Ch Sta L (ft) 1536.00 1629.00 1352.00 2030.00 1189.00 1159.00 1290.00 8 1329.00 2005.00 1265.00 1379.00 1345.00 Enc Sta L 2050. € 332.61 227.13 111.72 282.06 254.03 120.91 418.64 582.70 605.37 72.90 563.29 651.56 633.04 1323.53 1820.22 752.99 873.31 1996.70 354.76 384.51 1599.66 1671.83 Q Right (cts) 567.27 587.72 943.84 612.47 867.20 633.44 674.37 953.94 533.99 662.58 531.98 689.45 1498.00 1694.09 901.81 1966.87 1248.87 1418.21 Q Channel (cts) 1279.44 1440.46 1493.25 1241.99 798.36 1195.64 1138.26 1744.98 146.50 196.46 1435.11 303.27 597.92 561.09 723.38 1425.05 Q Left (cts) 260.44 351.65 378.16 386.20 424.52 432.42 470.75 586.50 274.02 250.77 233.93 150.00 120.72 258.91 E.G. Elev Top Wdth Act 8 605.28 605.06 604.95 604.94 604.91 604.91 604.90 604.89 603.12 600.84 596.17 604.64 597.34 HEC-RAS Plan: Prop FW AS BUILT River: RIVER-1 Reach: Reach-1 (Continued) 0.62 0.57 0.49 0.49 0.49 0.51 0.51 0.50 0.41 0.71 0.52 0.62 0.61 Prof Delta WS E 604.92 604.92 W.S. Elev 605.22 605.02 604.89 604.89 605.39 604.88 604.87 604.48 600.76 596.47 603.56 596.07 602.84 Œ Profile 100-Yr FW 100-Yr FW 100-Yr 100-Yr FW 100-Yr 100-Yr FW 100-Yr 100-Yr 100-Yr 100-Yr 100-Yr 100-Yr 100-Yr ¥ ¥ Ž ¥ M ¥ Σ× N ¥ River Sta 22110 21750 21270 21750 21270 21085 21075 20970 20970 21250 21250 21085 21075 21030 21030 20230 20230 19430 19430 17790 17790 16030 16030 15580 15580 Reach Reach-1 Reach-1

OTHER AREAS OF

FLOOD HAZARD

of 1% Annual Chance Flood with Average Depth Less Than One Foot or With Drainage Areas of Less Than One Square Mile Zone X Future Conditions 1% Annual Chance Flood Hazard Zone X

Area with Reduced Flood Risk due to Levee See Notes Zone X Areas Determined to be Outside the

AREAS 0.2% Annual Chance Floodplain *Zone X* Channel, Culvert, or Storm Sewer Accredited or Provisionally Accredited Levee, Dike, or Floodwall GENERAL

Non-accredited Levee, Dike, or Floodwall STRUCTURES North Carolina Geodetic Survey bench mark $\mathsf{BM5510}_{\otimes}$ National Geodetic Survey bench mark Contractor Est. NCFMP Survey bench mark 012 — 18-2 — Cross Sections with 1% Annual Chance Water Surface Elevation (BFE)

> (8) - - - - Coastal Transect — -- Coastal Transect Baseline Profile Baseline

Hydrographic Feature Limit of Study OTHER FEATURES **Jurisdiction Boundary** ACCREDITED LEVEE NOTES TO USERS: If an accredited levee note appears on this panel check with your local community to obtain more information, such as the estimated level of protection provided (which may exceed the 1-percent-annual-chance level) and Emergency Action Plan, on the levee system(s) shown as providing protection. To mitigate flood risk in residual risk areas, property owners and residents are encouraged to consider flood insurance and floodproofing or other protective measures. For more information on flood insurance, interested parties should visit the FEMA Website at http://www.fema.gov/business/nfip/index.shtm.

PROVISIONALLY ACCREDITED LEVEE NOTES TO USERS: If a Provisionally Accredited Levee (PAL) note appears on this panel, check with your local community to obtain more information, such as the estimated level of protection provided (which may exceed the 1-percent-annual-chance level) and Emergency Action Plan, on the levee system(s) shown as providing protection. To maintain accreditation, the levee owner or community is required to submit the data and documentation necessary to comply with Section 65.10 of the NFIP regulations. If the community or owner does not provide the necessary data and documentation or if the data and documentation provided indicates the levee system does not comply with Section 65.10 requirements, FEMA will revise the flood hazard and risk information for this area to reflect de-accreditation of the levee system. To mitigate flood risk in residual risk areas, property owners and residents are encouraged to consider flood insurance and floodproofing or other protective measures. For more information on flood insurance, interested parties should visit the FEMA

LIMIT OF MODERATE WAVE ACTION NOTES TO USERS: For some coastal flooding zones the AE Zone category has been divided by a Limit of Moderate Wave Action (LiMWA). The LiMWA represents the approximate landward limit of the 1.5-foot breaking wave. The effects of wave hazards between the VE Zone and the LiMWA (or between the shoreline and the LiMVVA for areas where VE Zones are not identified) will be similar to, but less severe than those in the VE Zone.

Limit of Moderate Wave Action (LiMWA)

Website at http://www.fema.gov/business/nfip/index.shtm.

COASTAL BARRIER RESOURCES SYSTEM (CBRS) NOTE This map may include approximate boundaries of the CBRS for informational purposes only. Flood insurance is not available within CBRS areas for structures that are newly built or substantially improved on or after the date(s) indicated on the map. For more information see http://www.fws.gov/habitatconservation/coastal_barrier.html, the FIS Report, or call the U.S. Fish and Wildlife Service Customer Service Center at 1-800-344-WILD.

CBRS Area Otherwise Protected Area

sura COMMUNITY

National Flood

ALAMANCE COUNTY ELON, TOWN OF GIBSONVILLE, TOWN OF **GUILFORD COUNTY**

370001 370411 8846 370387 8846 370111 8846

MAP NUMBER 3710884600K **MAP REVISED** 06/18/07

FLOODING SOURCE	SOURCE		FLOODWAY		WA.	BASE I TER- SURVA (FEET N	BASE FLOOD WATER- SURVACE ELEVATION (FEET NAVD 88)	NOI
CROSS SECTION	DISTANCE1	WIDTH	SECTION AREA	MEAN	REGULATORY	WITHOUT	MTIW	NON
		(FEET)	(SQUARE FEET)	(FEET PER		FLOODWAY	FLOODWAY	
Travis Creek								
001	120	200	2,111	2.4	583.8	575.5 2	575.5	0.0
600	850	180	1,875	2.7	583.8	575.72	575.9	0.2
010	1,020	120	1,476	3.5	583.8	576.32	576.5	0.2
017	1,650	170	1,659	3.1	583.8	577.0 2	577.3	0.3
028	2,825	180	1,712	3.0	583.8	578.5 2	579.1	9.0
051	5,110	150	1,585	3.2	583,8	582.4 2	582.9	0.5
058	5,770	75	1,112	4.6	583.8	583.0 2	583.7	0.7
062	6,150	140	1,668	2.9	585.5	586.2	586.2	0.7
076	7,610	160	1,643	2.9	586.9	587.8	587.8	6.0
083	8,310	160	1,854	2.6	587.8	588.5	588.5	0.7
660	9,910	200	2,249	2.1	589.3	589.3	589.9	9.0
1	11,140	165	1,537	2.4	590.2	590.2	590.8	9.0
128	12,770	165	1,668	2.2	591.9	591.9	592.4	0.5
139	13,900	140	1,246	2.9	593.1	593.1	593.7	9.0
143	14,320	92	854	4.2	593.8	593.8	594.5	0.7
149	14,880	270	2,634	1.2	595.1	595.1	595.7	9.0
156	15,580	210	1,581	6.	595.3	595.3	595.9	9.0
160	16,030	130	652	4.7	595.7	595.7	596.2	0.5
178	17,790	150	1,299	2.3	599.8	599.8	600.5	0.7
194	19,430	180	1,132	2.7	601.9	601.9	602.7	0.8
210	21,030	235	2,111	17	604.1	604.1	604.6	0.5
211	21,085	190	1,742	1.3	604.1	604.1	604.6	0.5
213	21,250	160	1,512	1.5	604.1	604.1	604.6	0.5
-								

Feet above mouth

 $^2\mbox{Elevation}$ computed without consideration of backwater effects from Haw River

FEDERAL EMERGENCY MANAGEMENT AGENCY

ALAMANCE COUNTY, NC AND INCORPORATED AREAS

FLOODWAY DATA

TRAVIS CREEK

TABLE 13

CROSS SECTION DISTANCE WIDTH AREA VELOCITY REGULATORY WIDTH AREA VELOCITY REGULATORY WIDTH AREA VELOCITY REGULATORY PLG SECOND SECO	FLOODING SOURCE	RCE		FLOODWAY		M	BASE FLOOD WATER- SURVACE ELEVATION (FEET NAVD 88)	-LOOD CE ELEVATIC AVD 88)	NC
21,750 160 1,374 1.7 1.7 1.2 2.0 2.1 2.3 2.0 1,374 1.7 2.0 2.1 2.0 1,528 1.4 2.0 2.5,340 2.0 2.5 2.5 2.0 2.5 2.0 2.5 2.0 2.5 2.0 2.5 2.0	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE	MEAN VELOCITY (FEET PER	REGULATORY	WITHOUT	WITH	INCREASE
21,750 160 1,374 1.7 1.7 1.100 2.1 2.2,440 1 1.24 2.0 1,124 2.0 2.5,340 1.24 2.0 1,528 1.4 1.0 2.6,840 1.6 2.0 955 1.6 1.6 2.0 3,500 1 1.00 1 1.00 1.05 3,900 1 1.7 1.450 1.7 1.450 1.7 1.470 1 1.20 3.28 3.6 1.470 1 1.20 3.21 3.6 1.7 1.470 1 1.20 3.21 3.6 1.7 1.470 1 1.85 1.394 1.3 2,390 2,390 2,390 2,390 2 1.6 2.9 441 4.0	Travis Creek (continued)				SECOND)				
22,440 145 1,100 2.1 23,245 200 1,528 1,4 26,070 250 1,528 1,4 26,070 250 1,574 1.0 26,840 250 250 355 1.6 1,600 100 105 525 5.0 3,900 130 735 3.6 1,270 90 328 3.6 1,470 100 105 90 328 3.6 1,019 100 105 90 328 3.6 1,111 2,390 1.394 1.3 2,390 2,390 265 441 4.0	218	21,750 1	160	1,374	1.7	604.2	604.2	604.8	0.6
23,245 120 1,124 2.0 25,340 200 1,528 1,4 26,840 200 955 1,6 26,840 200 955 1,6 26,840 100 140 650 4,1 1,600 105 525 5.0 3,900 105 525 5.0 4,516 170 170 1,450 1.7 1,270 90 321 3.6 1,470 70 221 5.0 1,019 105 3 612 2.9 1,111 185 1,394 1.3 2,390 25,340 265 441 4.0	224	22,4401	145	1,100	2.1	604.7	604.7	605.3	0.6
25,340 200 1,528 1.4 26,070 250 1,574 1.0 26,840 200 955 1.6 26,840 100 140 650 4.1 1,600 105 595 4.4 3,600 105 525 5.0 3,900 130 735 3.6 1,270 90 328 3.6 1,470 70 221 5.0 1,019 105 3 612 2.9 1,111 185 1,394 1.3	232	23,245	120	1,124	2.0	615.1	615.1	615.1	0.0
26,070 1,574 1.0 26,840 1,500 1,574 1.0 1,600 1,600 1,600 4.1 1,600 1,600 1,600 4.4 3,600 1,600 1,605 4.4 3,900 1,600 1,605 4.4 4,516 1,70 1,450 1,77 1,270 1,20 321 3.6 1,470 70 221 5.0 1,111 185 1,394 1.3 2,390 65 441 4.0	253	25,340	200	1,528	1.4	616.0	616.0	616.4	0.4
26,840 1 200 955 1.6 1,600 1 140 650 4.1 1,600 1 105 595 4.4 3,600 1 105 525 5.0 3,900 1 130 735 3.6 4,516 1 170 1,450 1.7 1,270 1 120 321 3.6 1,470 1 70 221 5.0 1,111 185 1,394 1.3 2,390 65 441 4.0	261	26,070	250	1,574	1.0	616.2	616.2	616.8	9.0
100 140 650 4.1 1,600 105 595 4.4 3,600 105 525 5.0 3,900 130 735 3.6 4,516 170 1,450 1.7 1,270 120 321 3.6 1,470 70 221 5.0 1,111 185 1,394 1.3 2,390 65 441 4.0	268	26,840	200	955	1.6	616.7	616.7	617.2	9.0
100 1 140 650 4.1 1,600 1 105 595 4.4 3,600 1 105 525 5.0 4,516 1 170 1,450 1.7 1,270 1 120 321 3.6 1,470 1 70 221 5.0 1,111 185 1,394 1.3 2,390 65 441 4.0	Tributary A to Haw Creek								
1,600 1 105 595 4.4 3,600 1 105 525 5.0 3,900 1 130 735 3.6 4,516 170 1,450 1.7 1,270 1 120 321 3.6 1,470 70 221 5.0 1,111 185 1,394 1.3 2,390 65 441 4.0	001	1001	140	650	4.1	529.4	525.8 4	526.4	0.6
3,600 1 105 525 5.0 3,900 1 130 735 3.6 4,516 1 170 1,450 1.7 1,270 1 90 328 3.6 1,470 1 70 221 5.0 1,019 2 105 3 612 2.9 1,111 2 185 1,394 1.3	016	1,600	105	595	4.4	532.7	532.7	533.5	8,0
3,900 1 130 735 3.6 1.7 1,450 1.7 1,270 1,470 1 70 221 3.6 3.6 1,470 1,470 1 70 221 5.0 1,111 2,390 65 441 4.0	036	3,600	105	525	5.0	543.2	543.2	543,3	0.1
4,516 1 170 1,450 1.7 100 1 120 321 3.6 1,270 3 328 3.6 1,470 1 70 221 5.0 1,019 1 105 612 2.9 1,111 185 1,394 1.3 2,390 65 441 4.0	039	3,900	130	735	3.6	544.5	544.5	545.1	9.0
100 1 120 321 3.6 1,270 90 328 3.6 1,470 70 221 5.0 1,019 105 612 2.9 1,111 185 1,394 1.3 2,390 65 441 4.0	45	4,516	170	1,450	1.7	551.1	551.1	551.6	0.5
1,270 321 3.6 1,270 328 3.6 1,470 70 221 5.0 1,019 2 105 3 612 2.9 1,111 2 185 1,394 1.3 2,390 2 65 441 4.0	ributary A to Travis Creek								
1,270 90 328 3.6 1,470 70 221 5.0 1,019 1,111 185 1,394 1.3 2,390 65 441 4.0	001	1001	120	321	3.6	616.0	613.9 5	613.9	0.0
$\begin{vmatrix} 1,470 \end{vmatrix}^{2} \begin{vmatrix} 70 & 221 & 5.0 \\ 1,019 \end{vmatrix}^{2} \begin{vmatrix} 105 & 612 & 2.9 \\ 1,111 \end{vmatrix}^{2} \begin{vmatrix} 185 & 1,394 & 1.3 \\ 65 & 441 & 4.0 \end{vmatrix}$	013	1,270	06	328	3.6	618.9	618.9	619.3	0.4
1,019 2 105 3 612 2.9 1,111 2 185 1,394 1.3 2,390 2 65 441 4.0	015	1,470	7.0	221	5.0	620.1	620.1	620.4	0.3
1,019 2 105 3 612 2.9 1,111 2 185 1,394 1.3 2,390 2 65 441 4.0	Tributary to Travis Creek								
1,111 2 185 1,394 1.3 2,390 2 65 441 4.0	010	1,0192	105 3	612	2.9	607.2	607.2	608.2	1.0
2,390 ² 65 441 4.0	011	1,1112	185	1,394	1.3	610.9	610.9	611.9	1.0
	024	2,390 2	65	441	4.0	613.1	613.1	614.0	0.9

1 Feet above mouth

²Elevation computed without consideration of backwater effects from Haw River

3Value is inaccurate, as floowday has been adjusted in this are to match topographic-based Redelineation

FEDERAL EMERGENCY MANAGEMENT AGENCY

ALAMANCE COUNTY, NC AND INCORPORATED AREAS

FLOODWAY DATA

⁴Elevation computed without consideration of backwater effects from Haw Creek ⁵Elevation computed without consideration of backwater effects from Travis River

TRAVIS CREEK - TRIBUTARY A TO HAW CREEK -TRIBUTARY A TO TRAVIS CREEK - TRIBUTARY TO TRAVIS CREEK {Date}

{Affected property owner name} {Affected property owner mailing address}

Re: Notification of Flood Hazard Revisions

Dear Mr./Ms./Mr. and Mrs. {Affected property owner}

Sungate Design Group, PA is applying for a Letter of Map Revision (LOMR) from the Federal Emergency Management Agency (DHS-FEMA) on behalf of Restoration Systems, LLC to revise FIRM 3710884600K for Alamance County, NC along Travis Creek. Restoration Systems, LLC is proposing to revise the FIRM to reflect the effects of a stream restoration project.

The Alamance County Planning Department in accordance with National Flood Insurance Program regulation 65.7(b)(1), hereby gives notice of Alamance County's intent to revise the 1% annual chance (100-year) floodway, generally located between Amick Road and Gibsonville Ossipee Road. Specifically, the floodway shall be revised from a point 740 feet downstream of Gibsonville Ossipee Road to a point 20 feet upstream of Gibsonville Ossipee Road.

The LOMR will also result in:

- Increases and decreases in the 1% annual chance water-surface elevations along Travis Creek from a point 7150 feet downstream of Gibsonville Ossipee Road to a point upstream of Gibsonville Ossipee Road.
- Widening and narrowing of the 1% annual chance floodplain along Travis Creek from a point 7150 feet downstream of Gibsonville Ossipee Road to a point upstream of Gibsonville Ossipee Road.
- Widening and narrowing of the 1% annual chance floodway along Travis revised from a point 740 feet downstream of Gibsonville Ossipee Road to a point 20 feet upstream of Gibsonville Ossipee Road

This letter is to inform you of flood hazard revisions on your property at {insert physical address}.

Maps and detailed analysis of the flood hazard revision can be reviewed at the Alamance County Planning Department at 217 College Street, Suite C, Graham, NC. If you have any questions or concerns about the proposed project or its affect on your property, you may contact Ms. Libby Hodges of Alamance County at 336-570-4053 from 8:00 am to 5:00 pm Monday through Friday.

Sincerely,

Ms. Libby Hodges Floodplain Administrator Alamance County Planning Department

Aycock Springs Stream Restoration - Property Owners

1. Parcel ID # 110189

Oakley, Gary M. Sr. & Pamela B.

3016 Amick Rd Elon, NC 27244

Prop Add.: Gibsonville Ossipee Rd

Acres: 26.23 GPIN: 8846554072

2. Parcel ID # 110190

Oakley, Gary M. Sr. & Pamela B. 3016 Amick Rd

Elon, NC 27244

Prop Add.: Amick Rd

Acres: 30.39 GPIN: 8846555814

3. Parcel ID # 172223

Kate T. McMillan Heirs C/O Crystal Gail Spivey 2059 W. Cherokee St Blacksburg, SC 29702

Prop Add.: Gibsonville Ossipee Rd

Acres: 1.21

GPIN: 8846458428

4. Parcel ID # 110136

Oakley, Gary M. Sr. & Pamela B.

3016 Amick Rd Elon, NC 27244

Prop Add.: 1315 Gibsonville Ossipee Rd

Acres: 14.71 GPIN: 8846454775

5. Parcel ID # 110137

Oakley, Gary M. Sr. & Pamela B.

3016 Amick Rd Elon, NC 27244 Prop Add.: Amick Rd

Acres: 6.49

GPIN: 8846469557

6. Parcel ID # 170380

Oakley, Gary M. Sr. & Pamela B. 3016 Amick Rd

Elon, NC 27244

Prop Add.: Gibsonville Ossipee Rd

Acres: 16.59 GPIN: 8846464882

7. Parcel ID # 110223

Oakley, Gary M. Sr. & Pamela B.

3016 Amick Rd Elon, NC 27244 Prop Add.: Amick Rd

Acres: 13.60 GPIN: 8846652886

8. Parcel ID # 110188

Holt D. Lewis Family Trust C/O Carolyn Pulley 1431 Kirkpatrick Rd Burlington, NC 27215

Prop Add.: Gibsonville Ossipee Rd

Acres: 67.79 GPIN: 8846546133

9. Parcel ID #110112

Ridge, Kathryn L. etal

1100 Metropolitan Ave #410

Charlotte, NC 28204 Prop Add: Piedmont Ave

Acres: 71.97 GPIN: 8846351505

10. Parcel ID #109886

Litten, Steven Wallace 101 E Main St

Gibsonville, NC 27249

Prop Add: 805 Piedmont Ave

Acres: 53.58 GPIN: 8846144304

11. Parcel ID #109887

Litten, Tony Maxton & Pamela B. 3042 Burke Clubhouse Rd

Gibsonville, NC 27249

Prop Add: 3040 Burke Clubhouse Rd

Acres: 38.14 GPIN: 8846151285

12. Parcel ID #109997

Guilford County

Prop Add: Gibsonville Ossipee Rd

Acres:

GPIN: 8846274076

